Suppr超能文献

慢性毒性建模:实验变异性与(定量)构效关系/类推预测的比较

Modeling Chronic Toxicity: A Comparison of Experimental Variability With (Q)SAR/Read-Across Predictions.

作者信息

Helma Christoph, Vorgrimmler David, Gebele Denis, Gütlein Martin, Engeli Barbara, Zarn Jürg, Schilter Benoit, Lo Piparo Elena

机构信息

In Silico Toxicology Gmbh, Basel, Switzerland.

Data Mining Department, Institute of Computer Science, Johannes Gutenberg Universität Mainz, Mainz, Germany.

出版信息

Front Pharmacol. 2018 Apr 25;9:413. doi: 10.3389/fphar.2018.00413. eCollection 2018.

Abstract

This study compares the accuracy of (Q)SAR/read-across predictions with the experimental variability of chronic lowest-observed-adverse-effect levels (LOAELs) from experiments. We could demonstrate that predictions of the lazy structure-activity relationships (lazar) algorithm within the applicability domain of the training data have the same variability as the experimental training data. Predictions with a lower similarity threshold (i.e., a larger distance from the applicability domain) are also significantly better than random guessing, but the errors to be expected are higher and a manual inspection of prediction results is highly recommended.

摘要

本研究将(定量)构效关系/类推预测的准确性与实验中慢性最低观察到的有害作用水平(LOAELs)的实验变异性进行了比较。我们能够证明,在训练数据适用范围内的惰性构效关系(lazar)算法预测与实验训练数据具有相同的变异性。相似度阈值较低(即与适用范围的距离较大)的预测也明显优于随机猜测,但预期误差较高,强烈建议对预测结果进行人工检查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/676a/5996880/74b6346106e3/fphar-09-00413-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验