Petersen Ashley, Simon Noah, Witten Daniela
Department of Biostatistics, University of Washington, Seattle, WA 98195.
Departments of Biostatistics and Statistics, University of Washington, Seattle, WA 98195.
J Mach Learn Res. 2016 Jun;17.
We consider the problem of predicting an outcome variable on the basis of a small number of covariates, using an interpretable yet non-additive model. We propose (CRISP) for this task. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. We explore the properties of CRISP, and evaluate its performance in a simulation study and on a housing price data set.
我们考虑使用可解释但非加法模型,基于少量协变量预测结果变量的问题。我们为此任务提出了(CRISP)。CRISP以数据自适应的方式将协变量空间划分为多个块,并在每个块内拟合一个均值模型。与其他划分方法不同,CRISP通过解决一个凸优化问题,采用非贪婪方法进行拟合,从而得到低方差拟合。我们探索了CRISP的性质,并在模拟研究和房价数据集上评估了它的性能。