Suppr超能文献

带 - 最近邻融合套索的自适应非参数回归。

Adaptive nonparametric regression with the -nearest neighbour fused lasso.

作者信息

Madrid Padilla Oscar Hernan, Sharpnack James, Chen Yanzhen, Witten Daniela M

机构信息

Department of Statistics, University of California, 520 Portola Plaza, Los Angeles, California, U.S.A.

Department of Statistics, University of California, One Shields Avenue, Davis, California, U.S.A.

出版信息

Biometrika. 2020 Jun;107(2):293-310. doi: 10.1093/biomet/asz071. Epub 2020 Jan 29.

Abstract

The fused lasso, also known as total-variation denoising, is a locally adaptive function estimator over a regular grid of design points. In this article, we extend the fused lasso to settings in which the points do not occur on a regular grid, leading to a method for nonparametric regression. This approach, which we call the [Formula: see text]-nearest-neighbours fused lasso, involves computing the [Formula: see text]-nearest-neighbours graph of the design points and then performing the fused lasso over this graph. We show that this procedure has a number of theoretical advantages over competing methods: specifically, it inherits local adaptivity from its connection to the fused lasso, and it inherits manifold adaptivity from its connection to the [Formula: see text]-nearest-neighbours approach. In a simulation study and an application to flu data, we show that excellent results are obtained. For completeness, we also study an estimator that makes use of an [Formula: see text]-graph rather than a [Formula: see text]-nearest-neighbours graph and contrast it with the [Formula: see text]-nearest-neighbours fused lasso.

摘要

融合套索,也称为全变差去噪,是一种在设计点的规则网格上的局部自适应函数估计器。在本文中,我们将融合套索扩展到设计点不在规则网格上的情况,从而得到一种非参数回归方法。我们将这种方法称为[公式:见正文]最近邻融合套索,它涉及计算设计点的[公式:见正文]最近邻图,然后在该图上执行融合套索。我们表明,该过程相对于竞争方法具有许多理论优势:具体而言,它从与融合套索的联系中继承了局部适应性,并且从与[公式:见正文]最近邻方法的联系中继承了流形适应性。在一项模拟研究以及对流感数据的应用中,我们表明获得了出色的结果。为了完整起见,我们还研究了一种使用[公式:见正文]图而不是[公式:见正文]最近邻图的估计器,并将其与[公式:见正文]最近邻融合套索进行对比。

相似文献

1
Adaptive nonparametric regression with the -nearest neighbour fused lasso.
Biometrika. 2020 Jun;107(2):293-310. doi: 10.1093/biomet/asz071. Epub 2020 Jan 29.
3
A SIGNIFICANCE TEST FOR THE LASSO.
Ann Stat. 2014 Apr;42(2):413-468. doi: 10.1214/13-AOS1175.
4
Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise.
Inf inference. 2024 Sep 20;13(4):iaae026. doi: 10.1093/imaiai/iaae026. eCollection 2024 Dec.
5
More efficient approximation of smoothing splines via space-filling basis selection.
Biometrika. 2020 Sep;107(3):723-735. doi: 10.1093/biomet/asaa019. Epub 2020 May 7.
6
Analysis of alcoholic EEG signals based on horizontal visibility graph entropy.
Brain Inform. 2014 Dec;1(1-4):19-25. doi: 10.1007/s40708-014-0003-x. Epub 2014 Sep 13.
8
Graph features based classification of bronchial and pleural rub sound signals: the potential of complex network unwrapped.
Phys Eng Sci Med. 2024 Dec;47(4):1447-1459. doi: 10.1007/s13246-024-01455-4. Epub 2024 Jul 1.
9
Interplay between [Formula: see text]-core and community structure in complex networks.
Sci Rep. 2020 Sep 7;10(1):14702. doi: 10.1038/s41598-020-71426-8.
10
Misclassified group-tested current status data.
Biometrika. 2016 Dec;103(4):801-815. doi: 10.1093/biomet/asw043. Epub 2016 Dec 8.

引用本文的文献

1
Varying-coefficients for regional quantile via KNN-based LASSO with applications to health outcome study.
Stat Med. 2023 Sep 30;42(22):3903-3918. doi: 10.1002/sim.9839. Epub 2023 Jun 27.

本文引用的文献

1
Fused Lasso Additive Model.
J Comput Graph Stat. 2016;25(4):1005-1025. doi: 10.1080/10618600.2015.1073155. Epub 2016 Nov 10.
3
Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing.
IEEE Trans Image Process. 2008 Jul;17(7):1047-60. doi: 10.1109/TIP.2008.924284.
4
An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision.
IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1124-37. doi: 10.1109/TPAMI.2004.60.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验