Suppr超能文献

带 - 最近邻融合套索的自适应非参数回归。

Adaptive nonparametric regression with the -nearest neighbour fused lasso.

作者信息

Madrid Padilla Oscar Hernan, Sharpnack James, Chen Yanzhen, Witten Daniela M

机构信息

Department of Statistics, University of California, 520 Portola Plaza, Los Angeles, California, U.S.A.

Department of Statistics, University of California, One Shields Avenue, Davis, California, U.S.A.

出版信息

Biometrika. 2020 Jun;107(2):293-310. doi: 10.1093/biomet/asz071. Epub 2020 Jan 29.

Abstract

The fused lasso, also known as total-variation denoising, is a locally adaptive function estimator over a regular grid of design points. In this article, we extend the fused lasso to settings in which the points do not occur on a regular grid, leading to a method for nonparametric regression. This approach, which we call the [Formula: see text]-nearest-neighbours fused lasso, involves computing the [Formula: see text]-nearest-neighbours graph of the design points and then performing the fused lasso over this graph. We show that this procedure has a number of theoretical advantages over competing methods: specifically, it inherits local adaptivity from its connection to the fused lasso, and it inherits manifold adaptivity from its connection to the [Formula: see text]-nearest-neighbours approach. In a simulation study and an application to flu data, we show that excellent results are obtained. For completeness, we also study an estimator that makes use of an [Formula: see text]-graph rather than a [Formula: see text]-nearest-neighbours graph and contrast it with the [Formula: see text]-nearest-neighbours fused lasso.

摘要

融合套索,也称为全变差去噪,是一种在设计点的规则网格上的局部自适应函数估计器。在本文中,我们将融合套索扩展到设计点不在规则网格上的情况,从而得到一种非参数回归方法。我们将这种方法称为[公式:见正文]最近邻融合套索,它涉及计算设计点的[公式:见正文]最近邻图,然后在该图上执行融合套索。我们表明,该过程相对于竞争方法具有许多理论优势:具体而言,它从与融合套索的联系中继承了局部适应性,并且从与[公式:见正文]最近邻方法的联系中继承了流形适应性。在一项模拟研究以及对流感数据的应用中,我们表明获得了出色的结果。为了完整起见,我们还研究了一种使用[公式:见正文]图而不是[公式:见正文]最近邻图的估计器,并将其与[公式:见正文]最近邻融合套索进行对比。

相似文献

3
A SIGNIFICANCE TEST FOR THE LASSO.套索(LASSO)的显著性检验
Ann Stat. 2014 Apr;42(2):413-468. doi: 10.1214/13-AOS1175.
10
Misclassified group-tested current status data.误分类的群体检测当前状态数据。
Biometrika. 2016 Dec;103(4):801-815. doi: 10.1093/biomet/asw043. Epub 2016 Dec 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验