Suppr超能文献

融合套索加法模型

Fused Lasso Additive Model.

作者信息

Petersen Ashley, Witten Daniela, Simon Noah

机构信息

Department of Biostatistics, University of Washington, Seattle WA 98195.

出版信息

J Comput Graph Stat. 2016;25(4):1005-1025. doi: 10.1080/10618600.2015.1073155. Epub 2016 Nov 10.

Abstract

We consider the problem of predicting an outcome variable using covariates that are measured on independent observations, in a setting in which additive, flexible, and interpretable fits are desired. We propose the (FLAM), in which each additive function is estimated to be piecewise constant with a small number of adaptively-chosen knots. FLAM is the solution to a convex optimization problem, for which a simple algorithm with guaranteed convergence to a global optimum is provided. FLAM is shown to be consistent in high dimensions, and an unbiased estimator of its degrees of freedom is proposed. We evaluate the performance of FLAM in a simulation study and on two data sets. Supplemental materials are available online, and the R package flam is available on CRAN.

摘要

我们考虑在需要进行加法、灵活且可解释拟合的情况下,使用在独立观测值上测量的协变量来预测结果变量的问题。我们提出了灵活加法模型(FLAM),其中每个加法函数被估计为具有少量自适应选择节点的分段常数。FLAM是一个凸优化问题的解,为此提供了一种保证收敛到全局最优的简单算法。结果表明,FLAM在高维情况下是一致的,并且提出了其自由度的无偏估计量。我们在模拟研究和两个数据集上评估了FLAM的性能。补充材料可在线获取,R包flam可在CRAN上获取。

相似文献

1
Fused Lasso Additive Model.融合套索加法模型
J Comput Graph Stat. 2016;25(4):1005-1025. doi: 10.1080/10618600.2015.1073155. Epub 2016 Nov 10.
2
Convex Modeling of Interactions with Strong Heredity.具有强遗传性的相互作用的凸模型
J Comput Graph Stat. 2016;25(4):981-1004. doi: 10.1080/10618600.2015.1067217. Epub 2015 Aug 12.
4
Data-adaptive additive modeling.数据自适应加法建模。
Stat Med. 2019 Feb 20;38(4):583-600. doi: 10.1002/sim.7859. Epub 2018 Jul 16.
7
Group Sparse Additive Models.组稀疏加法模型
Proc Int Conf Mach Learn. 2012;2012:871-878.

引用本文的文献

1
Covariance Assisted Multivariate Penalized Additive Regression (CoMPAdRe).协方差辅助多元惩罚加法回归(CoMPAdRe)。
J Comput Graph Stat. 2025;34(2):591-600. doi: 10.1080/10618600.2024.2407453. Epub 2024 Nov 22.
6
Reluctant Generalised Additive Modelling.非自愿广义相加模型
Int Stat Rev. 2020 Dec;88(Suppl 1):S205-S224. doi: 10.1111/insr.12429. Epub 2020 Nov 22.
8
Flexible and Interpretable Models for Survival Data.生存数据的灵活且可解释模型
J Comput Graph Stat. 2019;28(4):954-966. doi: 10.1080/10618600.2019.1592758. Epub 2019 May 20.

本文引用的文献

1
STANDARDIZATION AND THE GROUP LASSO PENALTY.标准化与组套索惩罚
Stat Sin. 2012 Jul;22(3):983-1001. doi: 10.5705/ss.2011.075.
5
VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS.非参数加法模型中的变量选择
Ann Stat. 2010 Aug 1;38(4):2282-2313. doi: 10.1214/09-AOS781.
9
Generalized additive models for medical research.医学研究中的广义相加模型。
Stat Methods Med Res. 1995 Sep;4(3):187-96. doi: 10.1177/096228029500400302.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验