Kumar Abhishek, Christensen Ryan, Guo Min, Chandris Panos, Duncan William, Wu Yicong, Santella Anthony, Moyle Mark, Winter Peter W, Colón-Ramos Daniel, Bao Zhirong, Shroff Hari
Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892-7710;
Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10065; and.
Biol Bull. 2016 Aug;231(1):26-39. doi: 10.1086/689589.
Dual-view inverted selective plane illumination microscopy (diSPIM) enables high-speed, long-term, four-dimensional (4D) imaging with isotropic spatial resolution. It is also compatible with conventional sample mounting on glass coverslips. However, broadening of the light sheet at distances far from the beam waist and sample-induced scattering degrades diSPIM contrast and optical sectioning. We describe two simple improvements that address both issues and entail no additional hardware modifications to the base diSPIM. First, we demonstrate improved diSPIM sectioning by keeping the light sheet and detection optics stationary, and scanning the sample through the stationary light sheet (rather than scanning the broadening light sheet and detection plane through the stationary sample, as in conventional diSPIM). This stage-scanning approach allows a thinner sheet to be used when imaging laterally extended samples, such as fixed microtubules or motile mitochondria in cell monolayers, and produces finer contrast than does conventional diSPIM. We also used stage-scanning diSPIM to obtain high-quality, 4D nuclear datasets derived from an uncompressed nematode embryo, and performed lineaging analysis to track 97% of cells until twitching. Second, we describe the improvement of contrast in thick, scattering specimens by synchronizing light-sheet synthesis with the rolling, electronic shutter of our scientific complementary metal-oxide-semiconductor (sCMOS) detector. This maneuver forms a virtual confocal slit in the detection path, partially removing out-of-focus light. We demonstrate the applicability of our combined stage- and slit-scanning- methods by imaging pollen grains and nuclear and neuronal structures in live nematode embryos. All acquisition and analysis code is freely available online.
双视图倒置选择性平面照明显微镜(diSPIM)能够以各向同性空间分辨率进行高速、长期的四维(4D)成像。它还与传统的玻璃盖玻片上的样品安装方式兼容。然而,在远离束腰的距离处光片变宽以及样品引起的散射会降低diSPIM的对比度和光学切片效果。我们描述了两种简单的改进方法,可解决这两个问题,并且无需对基础diSPIM进行额外的硬件修改。首先,我们通过保持光片和检测光学器件固定,并使样品穿过固定的光片进行扫描(而不是像传统diSPIM那样使变宽的光片和检测平面穿过固定的样品),展示了改进的diSPIM切片效果。这种载物台扫描方法在对横向延伸的样品(如细胞单层中的固定微管或活动线粒体)成像时允许使用更薄的光片,并产生比传统diSPIM更精细的对比度。我们还使用载物台扫描diSPIM从未压缩的线虫胚胎中获得了高质量的4D核数据集,并进行了谱系分析以追踪97%的细胞直至抽搐。其次,我们描述了通过将光片合成与我们的科学互补金属氧化物半导体(sCMOS)探测器的滚动电子快门同步来提高厚散射标本的对比度。这种操作在检测路径中形成一个虚拟共焦狭缝,部分去除离焦光。我们通过对线虫胚胎中的花粉粒、核结构和神经元结构进行成像,展示了我们的载物台和狭缝扫描组合方法的适用性。所有采集和分析代码均可在网上免费获取。