Patel Disha, Antwi Janet, Koneru Pratibha C, Serrao Erik, Forli Stefano, Kessl Jacques J, Feng Lei, Deng Nanjie, Levy Ronald M, Fuchs James R, Olson Arthur J, Engelman Alan N, Bauman Joseph D, Kvaratskhelia Mamuka, Arnold Eddy
From the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854.
Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and.
J Biol Chem. 2016 Nov 4;291(45):23569-23577. doi: 10.1074/jbc.M116.753384. Epub 2016 Sep 19.
HIV-1 integrase (IN) is essential for virus replication and represents an important multifunctional therapeutic target. Recently discovered quinoline-based allosteric IN inhibitors (ALLINIs) potently impair HIV-1 replication and are currently in clinical trials. ALLINIs exhibit a multimodal mechanism of action by inducing aberrant IN multimerization during virion morphogenesis and by competing with IN for binding to its cognate cellular cofactor LEDGF/p75 during early steps of HIV-1 infection. However, quinoline-based ALLINIs impose a low genetic barrier for the evolution of resistant phenotypes, which highlights a need for discovery of second-generation inhibitors. Using crystallographic screening of a library of 971 fragments against the HIV-1 IN catalytic core domain (CCD) followed by a fragment expansion approach, we have identified thiophenecarboxylic acid derivatives that bind at the CCD-CCD dimer interface at the principal lens epithelium-derived growth factor (LEDGF)/p75 binding pocket. The most active derivative (5) inhibited LEDGF/p75-dependent HIV-1 IN activity in vitro with an IC of 72 μm and impaired HIV-1 infection of T cells at an EC of 36 μm The identified lead compound, with a relatively small molecular weight (221 Da), provides an optimal building block for developing a new class of inhibitors. Furthermore, although structurally distinct thiophenecarboxylic acid derivatives target a similar pocket at the IN dimer interface as the quinoline-based ALLINIs, the lead compound, 5, inhibited IN mutants that confer resistance to quinoline-based compounds. Collectively, our findings provide a plausible path for structure-based development of second-generation ALLINIs.
HIV-1整合酶(IN)对于病毒复制至关重要,是一个重要的多功能治疗靶点。最近发现的喹啉类别构IN抑制剂(ALLINIs)能有效抑制HIV-1复制,目前正处于临床试验阶段。ALLINIs通过在病毒粒子形态发生过程中诱导异常的IN多聚化,以及在HIV-1感染早期与IN竞争结合其同源细胞辅因子LEDGF/p75,展现出多模式作用机制。然而,喹啉类ALLINIs对耐药表型的进化所形成的遗传屏障较低,这凸显了开发第二代抑制剂的必要性。通过对971个片段的文库针对HIV-1 IN催化核心结构域(CCD)进行晶体学筛选,随后采用片段扩展方法,我们鉴定出了噻吩羧酸衍生物,它们在主要晶状体上皮衍生生长因子(LEDGF)/p75结合口袋处的CCD-CCD二聚体界面结合。活性最高的衍生物(5)在体外以72μm的IC5o抑制LEDGF/p75依赖的HIV-1 IN活性,并以36μm的EC5o损害T细胞的HIV-1感染。所鉴定的先导化合物分子量相对较小(221Da),为开发新型抑制剂提供了理想的构建模块。此外,尽管结构不同的噻吩羧酸衍生物与喹啉类ALLINIs靶向IN二聚体界面的相似口袋,但先导化合物5能抑制对喹啉类化合物产生耐药性的IN突变体。总体而言,我们的研究结果为基于结构的第二代ALLINIs开发提供了一条可行的途径。