Suppr超能文献

使用几何方法计算光凝指数对全视网膜激光光凝进行模拟。

Simulation of panretinal laser photocoagulation using geometric methods for calculating the photocoagulation index.

作者信息

Nishida Kentaro, Sakaguchi Hirokazu, Kamei Motohiro, Shiraki Nobuhiko, Oura Yoshihito, Wakabayashi Taku, Hara Chikako, Fukushima Yoko, Sato Tatsuhiko, Sayanagi Kaori, Sato Shigeru, Fukuda Masakatsu, Nishida Kohji

机构信息

Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita - Japan.

Department of Ophthalmology, Aichi Medical University, Nagakute - Japan.

出版信息

Eur J Ophthalmol. 2017 Mar 10;27(2):205-209. doi: 10.5301/ejo.5000865. Epub 2016 Sep 13.

Abstract

PURPOSE

To establish geometrically based methods for simulating panretinal laser photocoagulation (PRP) for the photocoagulation index.

METHODS

A formula for calculating the curved surface area of a spherical dome was used for the simulation. If the radius of the dome is c and the height of the dome is h, then the curved surface area (S) of the dome is S = π (c2 + h2). We calculated the area of the whole retina using this formula and the anatomical dimensions of the standard eyeball. To simulate PRP with a 400-μm spot on the retina with 1-spot spacing, we drew 400-μm-diameter circles, separated by 400 μm, on a retinal map. We calculated the ratio of the total retinal photocoagulated area to the whole retina, termed the photocoagulation index, in order to investigate the impact of the extent of the photocoagulated area and the pulse duration on PRP.

RESULTS

The whole retinal area was 1,092 mm2. The numbers of spots in the scattered and full-scattered PRP were 1,222 and 1,814, respectively. The photocoagulation index was 14.1% and 20.9% for scattered and full-scattered PRP, respectively. These values changed to 14.3% (5.6%) and 21.3% (8.3%), respectively, for PRP with a 100-ms pulse or a 20-ms pulse.

CONCLUSIONS

This method will be useful for investigating the impact of various PRP parameters (duration, spacing, intensity of burns, extent of photocoagulated area, etc.) on the photocoagulation index.

摘要

目的

建立基于几何学的方法来模拟全视网膜激光光凝(PRP)的光凝指数。

方法

使用计算球冠曲面面积的公式进行模拟。若球冠半径为c,球冠高度为h,则球冠的曲面面积(S)为S = π (c2 + h2)。我们利用该公式以及标准眼球的解剖尺寸计算了整个视网膜的面积。为了模拟在视网膜上光斑间距为1个光斑、光斑直径为400μm的PRP,我们在视网膜图上绘制了直径为400μm、间距为400μm的圆圈。我们计算了视网膜光凝总面积与整个视网膜面积的比值,即光凝指数,以研究光凝面积范围和脉冲持续时间对PRP的影响。

结果

整个视网膜面积为1092mm2。散射式和全散射式PRP中的光斑数量分别为1222个和1814个。散射式和全散射式PRP的光凝指数分别为14.1%和20.9%。对于脉冲持续时间为100ms或20ms的PRP,这些值分别变为14.3%(5.6%)和21.3%(8.3%)。

结论

该方法将有助于研究各种PRP参数(持续时间、间距、烧灼强度、光凝面积范围等)对光凝指数的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验