Hill Ethan A, Weitz Andrew C, Onderko Elizabeth, Romero-Rivera Adrian, Guo Yisong, Swart Marcel, Bominaar Emile L, Green Michael T, Hendrich Michael P, Lacy David C, Borovik A S
Department of Chemistry, University of California , Irvine, California 92697, United States.
Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States.
J Am Chem Soc. 2016 Oct 12;138(40):13143-13146. doi: 10.1021/jacs.6b07633. Epub 2016 Sep 30.
High-valent Fe-OH species are often invoked as key intermediates but have only been observed in Compound II of cytochrome P450s. To further address the properties of non-heme Fe-OH complexes, we demonstrate the reversible protonation of a synthetic Fe-oxo species containing a tris-urea tripodal ligand. The same protonated Fe-oxo species can be prepared via oxidation, suggesting that a putative Fe-oxo species was initially generated. Computational, Mössbauer, XAS, and NRVS studies indicate that protonation of the Fe-oxo complex most likely occurs on the tripodal ligand, which undergoes a structural change that results in the formation of a new intramolecular H-bond with the oxido ligand that aids in stabilizing the protonated adduct. We suggest that similar protonated high-valent Fe-oxo species may occur in the active sites of proteins. This finding further argues for caution when assigning unverified high-valent Fe-OH species to mechanisms.
高价铁的氢氧根物种常被认为是关键中间体,但仅在细胞色素P450的化合物II中被观察到。为了进一步研究非血红素铁的氢氧根配合物的性质,我们展示了一种含有三脲三脚架配体的合成铁氧物种的可逆质子化过程。相同的质子化铁氧物种可以通过氧化制备,这表明最初生成了一种假定的铁氧物种。计算、穆斯堡尔谱、X射线吸收光谱和非弹性拉曼光谱研究表明,铁氧配合物的质子化最有可能发生在三脚架配体上,该配体发生结构变化,导致与氧化配体形成新的分子内氢键,有助于稳定质子化加合物。我们认为,类似的质子化高价铁氧物种可能存在于蛋白质的活性位点中。这一发现进一步表明,在将未经证实的高价铁的氢氧根物种归因于反应机制时需谨慎。