Richardson Megan, Lambers James V
Department of Mathematics, The University of Southern Mississippi, 118 College Dr #5045, Hattiesburg, MS 39406 USA.
Springerplus. 2016 Sep 15;5(1):1567. doi: 10.1186/s40064-016-3217-y. eCollection 2016.
This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.
本文介绍了区间((-1,1))上的两类正交多项式,其权函数为[公式:见正文]。第一类满足边界条件[公式:见正文],第二类满足边界条件[公式:见正文]。这些边界条件自然地源于在具有狄利克雷边界条件的圆盘上定义的偏微分方程以及笛卡尔坐标下的正则性要求。通过对满足相同边界条件的勒让德多项式的短线性组合进行正交化,得到了正交多项式族。然后,推导了三项递推关系。最后,证明了从这些递推关系可以有效地计算出满足相同边界条件的广义雅可比多项式的相应递推关系。