Suppr超能文献

极坐标和柱面几何中偏微分方程正交多项式的递推关系。

Recurrence relations for orthogonal polynomials for PDEs in polar and cylindrical geometries.

作者信息

Richardson Megan, Lambers James V

机构信息

Department of Mathematics, The University of Southern Mississippi, 118 College Dr #5045, Hattiesburg, MS 39406 USA.

出版信息

Springerplus. 2016 Sep 15;5(1):1567. doi: 10.1186/s40064-016-3217-y. eCollection 2016.

Abstract

This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.

摘要

本文介绍了区间((-1,1))上的两类正交多项式,其权函数为[公式:见正文]。第一类满足边界条件[公式:见正文],第二类满足边界条件[公式:见正文]。这些边界条件自然地源于在具有狄利克雷边界条件的圆盘上定义的偏微分方程以及笛卡尔坐标下的正则性要求。通过对满足相同边界条件的勒让德多项式的短线性组合进行正交化,得到了正交多项式族。然后,推导了三项递推关系。最后,证明了从这些递推关系可以有效地计算出满足相同边界条件的广义雅可比多项式的相应递推关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c443/5023682/c0ade83c2a27/40064_2016_3217_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验