Adam Asrul, Ibrahim Zuwairie, Mokhtar Norrima, Shapiai Mohd Ibrahim, Mubin Marizan, Saad Ismail
Applied Control and Robotics (ACR) Laboratory, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
Faculty of Electrical and Electronic Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang Malaysia.
Springerplus. 2016 Sep 15;5(1):1580. doi: 10.1186/s40064-016-3277-z. eCollection 2016.
In the existing electroencephalogram (EEG) signals peak classification research, the existing models, such as Dumpala, Acir, Liu, and Dingle peak models, employ different set of features. However, all these models may not be able to offer good performance for various applications and it is found to be problem dependent. Therefore, the objective of this study is to combine all the associated features from the existing models before selecting the best combination of features. A new optimization algorithm, namely as angle modulated simulated Kalman filter (AMSKF) will be employed as feature selector. Also, the neural network random weight method is utilized in the proposed AMSKF technique as a classifier. In the conducted experiment, 11,781 samples of peak candidate are employed in this study for the validation purpose. The samples are collected from three different peak event-related EEG signals of 30 healthy subjects; (1) single eye blink, (2) double eye blink, and (3) eye movement signals. The experimental results have shown that the proposed AMSKF feature selector is able to find the best combination of features and performs at par with the existing related studies of epileptic EEG events classification.
在现有的脑电图(EEG)信号峰值分类研究中,诸如Dumpala、Acir、Liu和Dingle峰值模型等现有模型采用了不同的特征集。然而,所有这些模型可能无法在各种应用中提供良好的性能,并且发现其性能取决于具体问题。因此,本研究的目的是在选择最佳特征组合之前,将现有模型的所有相关特征进行合并。一种新的优化算法,即角度调制模拟卡尔曼滤波器(AMSKF)将被用作特征选择器。此外,在提出的AMSKF技术中,神经网络随机权重方法被用作分类器。在进行的实验中,本研究使用了11781个峰值候选样本用于验证目的。这些样本是从30名健康受试者的三种不同的与峰值事件相关的EEG信号中收集的;(1)单眼眨眼,(2)双眼眨眼,以及(3)眼球运动信号。实验结果表明,所提出的AMSKF特征选择器能够找到最佳的特征组合,并且在癫痫EEG事件分类的现有相关研究中表现相当。