Suppr超能文献

通过在采用24小时佩戴方案收集的activPAL数据中进行自动估计来确定成年人的有效清醒佩戴时间。

Identifying adults' valid waking wear time by automated estimation in activPAL data collected with a 24 h wear protocol.

作者信息

Winkler Elisabeth A H, Bodicoat Danielle H, Healy Genevieve N, Bakrania Kishan, Yates Thomas, Owen Neville, Dunstan David W, Edwardson Charlotte L

机构信息

School of Public Health, The University of Queensland, Brisbane, Queensland, Australia.

出版信息

Physiol Meas. 2016 Oct;37(10):1653-1668. doi: 10.1088/0967-3334/37/10/1653. Epub 2016 Sep 21.

Abstract

The activPAL monitor, often worn 24 h d, provides accurate classification of sitting/reclining posture. Without validated automated methods, diaries-burdensome to participants and researchers-are commonly used to ensure measures of sedentary behaviour exclude sleep and monitor non-wear. We developed, for use with 24 h wear protocols in adults, an automated approach to classify activity bouts recorded in activPAL 'Events' files as 'sleep'/non-wear (or not) and on a valid day (or not). The approach excludes long periods without posture change/movement, adjacent low-active periods, and days with minimal movement and wear based on a simple algorithm. The algorithm was developed in one population (STAND study; overweight/obese adults 18-40 years) then evaluated in AusDiab 2011/12 participants (n  =  741, 44% men, aged  >35 years, mean  ±  SD 58.5  ±  10.4 years) who wore the activPAL3 (7 d, 24 h d protocol). Algorithm agreement with a monitor-corrected diary method (usual practice) was tested in terms of the classification of each second as waking wear (Kappa; κ) and the average daily waking wear time, on valid days. The algorithm showed 'almost perfect' agreement (κ  >  0.8) for 88% of participants, with a median kappa of 0.94. Agreement varied significantly (p  <  0.05, two-tailed) by age (worsens with age) but not by gender. On average, estimated wear time was approximately 0.5 h d higher than by the diary method, with 95% limits of agreement of approximately this amount  ±2 h d. In free-living data from Australian adults, a simple algorithm developed in a different population showed 'almost perfect' agreement with the diary method for most individuals (88%). For several purposes (e.g. with wear standardisation), adopting a low burden, automated approach would be expected to have little impact on data quality. The accuracy for total waking wear time was less and algorithm thresholds may require adjustments for older populations.

摘要

activPAL监测仪通常每天佩戴24小时,能准确分类坐姿/躺卧姿势。在没有经过验证的自动化方法的情况下,日记(对参与者和研究人员来说都很繁琐)通常被用来确保久坐行为的测量不包括睡眠,并监测未佩戴情况。我们开发了一种自动化方法,用于成年人24小时佩戴方案,将activPAL“事件”文件中记录的活动时段分类为“睡眠”/未佩戴(或反之)以及有效日(或反之)。该方法基于一个简单算法,排除了长时间无姿势变化/无运动、相邻的低活动时段以及运动和佩戴最少的日子。该算法在一个人群(STAND研究;18 - 40岁超重/肥胖成年人)中开发,然后在2011/12年澳大利亚糖尿病研究(AusDiab)参与者(n = 741,44%为男性,年龄>35岁,平均±标准差58.5±10.4岁)中进行评估,这些参与者佩戴activPAL3(7天,每天24小时方案)。在有效日,就每秒作为清醒佩戴的分类(卡帕;κ)和平均每日清醒佩戴时间而言,测试了该算法与经监测器校正的日记法(常规做法)的一致性。该算法对88%的参与者显示出“几乎完美”的一致性(κ>0.8),卡帕中位数为0.94。一致性因年龄(随年龄变差)有显著差异(p<0.05,双侧),但不因性别而异。平均而言,估计的佩戴时间比日记法大约每天高0.5小时,一致性的95%界限约为此数值±2小时/天。在澳大利亚成年人的自由生活数据中,在不同人群中开发的一个简单算法对大多数个体(88%)显示出与日记法“几乎完美”的一致性。出于几个目的(例如佩戴标准化),采用低负担的自动化方法预计对数据质量影响很小。总清醒佩戴时间的准确性较低,并且算法阈值可能需要针对老年人群进行调整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验