Ahmed Maheen, Shaikh Attiya, Fida Mubassar
Resident in Orthodontics, The Aga Khan University Hospital, Section of Dentistry, Department of Surgery, Karachi, Pakistan.
Consultant Orthodontist/Assistant Professor, Program Coordinator Orthodontics Residency Program, The Aga Khan University Hospital, Section of Dentistry, Department of Surgery, Karachi, Pakistan.
Dental Press J Orthod. 2016 Jul-Aug;21(4):41-9. doi: 10.1590/2177-6709.21.4.041-049.oar.
Multiple cephalometric analyses are used to diagnose vertical skeletal facial discrepancy. A multitude of times, these parameters show conflicting results, and a specific diagnosis is hard to reach.
Hence, this study aimed to identify the skeletal analysis that performs best for the identification of vertical skeletal pattern in borderline cases.
The sample consisted of 161 subjects (71 males and 90 females; mean age = 23.6 ± 4.6 years). Y-axis, Sella-Nasion to mandibular plane angle (SN.MP), maxillary plane to mandibular plane angle (MMA), Sella-Nasion to Gonion-Gnathion angle (SN.GoGn), Frankfort to mandibular plane angle (FMA), R-angle and facial height ratio (LAFH.TAFH) were used to evaluate vertical growth pattern on lateral cephalograms. The subjects were divided into three groups (hypodivergent, normodivergent and hyperdivergent groups), as indicated by the diagnostic results of the majority of parameters. Kappa statistics was applied to compare the diagnostic accuracy of various analyses. To further validate the results, sensitivity and positive predictive values (PPV) for each parameter were also calculated.
SN.GoGn showed a substantial interclass agreement (k = 0.850). In the hypodivergent group, MMA showed the highest sensitivity (0.934), whereas FMA showed the highest PPV (0.964). In the normodivergent group, FMA showed the highest sensitivity (0.909) and SN.GoGn had the highest PPV (0.903). SN.GoGn showed the highest sensitivity (0.980) and PPV (0.87) in the hyperdivergent group.
SN.GoGn and FMA were found to be the most reliable indicators, whereas LAFH.TAFH is the least reliable indicator in assessing facial vertical growth pattern. Hence, the cephalometric analyses may be limited to fewer analyses of higher diagnostic performance.
多种头影测量分析方法用于诊断垂直骨骼面部差异。很多时候,这些参数显示出相互矛盾的结果,难以得出明确的诊断。
因此,本研究旨在确定在临界病例中对垂直骨骼模式识别效果最佳的骨骼分析方法。
样本包括161名受试者(71名男性和90名女性;平均年龄 = 23.6 ± 4.6岁)。使用Y轴、蝶鞍 - 鼻根点至下颌平面角(SN.MP)、上颌平面至下颌平面角(MMA)、蝶鞍 - 鼻根点至下颌角 - 颏下点角(SN.GoGn)、法兰克福平面至下颌平面角(FMA)、R角和面部高度比(LAFH.TAFH)来评估头颅侧位片上的垂直生长模式。根据大多数参数的诊断结果,将受试者分为三组(低角型、均角型和高角型组)。应用Kappa统计量比较各种分析方法的诊断准确性。为进一步验证结果,还计算了每个参数的敏感性和阳性预测值(PPV)。
SN.GoGn显示出高度的组间一致性(k = 0.850)。在低角型组中,MMA显示出最高的敏感性(0.934),而FMA显示出最高的PPV(0.964)。在均角型组中,FMA显示出最高的敏感性(0.909),SN.GoGn具有最高的PPV(0.903)。在高角型组中,SN.GoGn显示出最高的敏感性(0.980)和PPV(0.87)。
发现SN.GoGn和FMA是评估面部垂直生长模式最可靠的指标,而LAFH.TAFH是最不可靠的指标。因此,头影测量分析可能限于对诊断性能较高的较少分析方法。