Suppr超能文献

南卡罗来纳州呼吸道癌症的时空变化:一种用于风险估计的灵活多变量混合建模方法。

Space-time variation of respiratory cancers in South Carolina: a flexible multivariate mixture modeling approach to risk estimation.

作者信息

Carroll Rachel, Lawson Andrew B, Kirby Russell S, Faes Christel, Aregay Mehreteab, Watjou Kevin

机构信息

Department of Public Health, Medical University of South Carolina, Charleston.

Department of Public Health, Medical University of South Carolina, Charleston.

出版信息

Ann Epidemiol. 2017 Jan;27(1):42-51. doi: 10.1016/j.annepidem.2016.08.014. Epub 2016 Aug 31.

Abstract

PURPOSE

Many types of cancer have an underlying spatiotemporal distribution. Spatiotemporal mixture modeling can offer a flexible approach to risk estimation via the inclusion of latent variables.

METHODS

In this article, we examine the application and benefits of using four different spatiotemporal mixture modeling methods in the modeling of cancer of the lung and bronchus as well as "other" respiratory cancer incidences in the state of South Carolina.

RESULTS

Of the methods tested, no single method outperforms the other methods; which method is best depends on the cancer under consideration. The lung and bronchus cancer incidence outcome is best described by the univariate modeling formulation, whereas the "other" respiratory cancer incidence outcome is best described by the multivariate modeling formulation.

CONCLUSIONS

Spatiotemporal multivariate mixture methods can aid in the modeling of cancers with small and sparse incidences when including information from a related, more common type of cancer.

摘要

目的

许多类型的癌症都有潜在的时空分布。时空混合建模可以通过纳入潜在变量提供一种灵活的风险估计方法。

方法

在本文中,我们研究了四种不同的时空混合建模方法在南卡罗来纳州肺癌和支气管癌以及“其他”呼吸道癌症发病率建模中的应用和益处。

结果

在所测试的方法中,没有一种方法优于其他方法;哪种方法最佳取决于所考虑的癌症类型。单变量建模公式最能描述肺癌和支气管癌的发病率结果,而多变量建模公式最能描述“其他”呼吸道癌症的发病率结果。

结论

当纳入来自相关的、更常见癌症类型的信息时,时空多变量混合方法有助于对发病率低且数据稀疏的癌症进行建模。

相似文献

1
Space-time variation of respiratory cancers in South Carolina: a flexible multivariate mixture modeling approach to risk estimation.
Ann Epidemiol. 2017 Jan;27(1):42-51. doi: 10.1016/j.annepidem.2016.08.014. Epub 2016 Aug 31.
4
Tumours of the respiratory tract.
Recent Results Cancer Res. 1973;41:79-93. doi: 10.1007/978-3-642-80725-1_4.
5
Extensions to Multivariate Space Time Mixture Modeling of Small Area Cancer Data.
Int J Environ Res Public Health. 2017 May 9;14(5):503. doi: 10.3390/ijerph14050503.
7
A Bayesian latent process spatiotemporal regression model for areal count data.
Spat Spatiotemporal Epidemiol. 2018 Jun;25:25-37. doi: 10.1016/j.sste.2018.01.003. Epub 2018 Feb 2.
8
Risk of second cancers in patients with colorectal carcinoids.
Dis Colon Rectum. 2002 Jan;45(1):91-7. doi: 10.1007/s10350-004-6119-y.
9
Bayesian hierarchical modeling of the dynamics of spatio-temporal influenza season outbreaks.
Spat Spatiotemporal Epidemiol. 2010 Jul;1(2-3):187-95. doi: 10.1016/j.sste.2010.03.001. Epub 2010 Mar 20.

引用本文的文献

2
Multivariate Bayesian meta-analysis: joint modelling of multiple cancer types using summary statistics.
Int J Health Geogr. 2020 Oct 17;19(1):42. doi: 10.1186/s12942-020-00234-0.
3
Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping.
Environmetrics. 2017 Dec;28(8). doi: 10.1002/env.2465. Epub 2017 Sep 25.
4
Extensions to Multivariate Space Time Mixture Modeling of Small Area Cancer Data.
Int J Environ Res Public Health. 2017 May 9;14(5):503. doi: 10.3390/ijerph14050503.

本文引用的文献

1
Spatio-temporal Bayesian model selection for disease mapping.
Environmetrics. 2016 Dec;27(8):466-478. doi: 10.1002/env.2410. Epub 2016 Sep 28.
3
Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models.
Biometrics. 2006 Dec;62(4):1197-206. doi: 10.1111/j.1541-0420.2006.00617.x.
4
The epidemiology of vitamin D and cancer incidence and mortality: a review (United States).
Cancer Causes Control. 2005 Mar;16(2):83-95. doi: 10.1007/s10552-004-1661-4.
5
Bayesian modelling of inseparable space-time variation in disease risk.
Stat Med. 2000;19(17-18):2555-67. doi: 10.1002/1097-0258(20000915/30)19:17/18<2555::aid-sim587>3.0.co;2-#.
6
Modelling risk from a disease in time and space.
Stat Med. 1998 Sep 30;17(18):2045-2060. doi: 10.1002/(sici)1097-0258(19980930)17:18<2045::aid-sim943>3.0.co;2-p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验