Knorr-Held L
Institute of Statistics, Ludwig-Maximilians-University Munich, Ludwigstr. 33, 80539 Munich, Germany.
Stat Med. 2000;19(17-18):2555-67. doi: 10.1002/1097-0258(20000915/30)19:17/18<2555::aid-sim587>3.0.co;2-#.
This paper proposes a unified framework for a Bayesian analysis of incidence or mortality data in space and time. We introduce four different types of prior distributions for space x time interaction in extension of a model with only main effects. Each type implies a certain degree of prior dependence for the interaction parameters, and corresponds to the product of one of the two spatial with one of the two temporal main effects. The methodology is illustrated by an analysis of Ohio lung cancer data 1968-1988 via Markov chain Monte Carlo simulation. We compare the fit and the complexity of several models with different types of interaction by means of quantities related to the posterior deviance. Our results confirm an epidemiological hypothesis about the temporal development of the association between urbanization and risk factors for cancer.
本文提出了一个用于对时空发病率或死亡率数据进行贝叶斯分析的统一框架。在仅具有主效应的模型扩展中,我们引入了四种不同类型的时空交互先验分布。每种类型都意味着交互参数有一定程度的先验依赖性,并且对应于两个空间主效应之一与两个时间主效应之一的乘积。通过马尔可夫链蒙特卡罗模拟对1968 - 1988年俄亥俄州肺癌数据进行分析,阐述了该方法。我们通过与后验偏差相关的量,比较了具有不同类型交互的几个模型的拟合度和复杂性。我们的结果证实了一个关于城市化与癌症风险因素之间关联的时间发展的流行病学假设。