Suppr超能文献

对疾病在时间和空间上的风险进行建模。

Modelling risk from a disease in time and space.

作者信息

Knorr-Held L, Besag J

机构信息

Institut für Statistik, Universität München, Germany.

出版信息

Stat Med. 1998 Sep 30;17(18):2045-2060. doi: 10.1002/(sici)1097-0258(19980930)17:18<2045::aid-sim943>3.0.co;2-p.

Abstract

This paper combines existing models for longitudinal and spatial data in a hierarchical Bayesian framework, with particular emphasis on the role of time- and space-varying covariate effects. Data analysis is implemented via Markov chain Monte Carlo methods. The methodology is illustrated by a tentative re-analysis of Ohio lung cancer data 1968-1988. Two approaches that adjust for unmeasured spatial covariates, particularly tobacco consumption, are described. The first includes random effects in the model to account for unobserved heterogeneity; the second adds a simple urbanization measure as a surrogate for smoking behaviour. The Ohio data set has been of particular interest because of the suggestion that a nuclear facility in the southwest of the state may have caused increased levels of lung cancer there. However, we contend here that the data are inadequate for a proper investigation of this issue.

摘要

本文在分层贝叶斯框架中结合了用于纵向和空间数据的现有模型,特别强调了时空变化协变量效应的作用。通过马尔可夫链蒙特卡罗方法进行数据分析。通过对1968 - 1988年俄亥俄州肺癌数据的初步重新分析来说明该方法。描述了两种针对未测量空间协变量(特别是烟草消费)进行调整的方法。第一种方法在模型中纳入随机效应以考虑未观察到的异质性;第二种方法添加一个简单的城市化指标作为吸烟行为的替代变量。俄亥俄州的数据集一直备受关注,因为有迹象表明该州西南部的一个核设施可能导致了当地肺癌发病率的上升。然而,我们在此认为这些数据不足以对这个问题进行恰当的调查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验