Suppr超能文献

对奥司他韦-扎那米韦杂交抑制剂对第2组突变流感病毒神经氨酸酶的耐药性。

Resistance to Mutant Group 2 Influenza Virus Neuraminidases of an Oseltamivir-Zanamivir Hybrid Inhibitor.

作者信息

Wu Yan, Gao Feng, Qi Jianxun, Bi Yuhai, Fu Lifeng, Mohan Sankar, Chen Yuhang, Li Xuebing, Pinto B Mario, Vavricka Christopher J, Tien Po, Gao George F

机构信息

CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Center for Influenza Research and Early-warning, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

出版信息

J Virol. 2016 Nov 14;90(23):10693-10700. doi: 10.1128/JVI.01703-16. Print 2016 Dec 1.

Abstract

UNLABELLED

Influenza virus neuraminidase (NA) drug resistance is one of the challenges to preparedness against epidemic and pandemic influenza virus infections. NA N1- and N2-containing influenza viruses are the primary cause of seasonal epidemics and past pandemics. The structural and functional basis underlying drug resistance of the influenza virus N1 NA is well characterized. Yet drug resistance of the N2 strain is not well understood. Here, we confirm that replacement of N2 E119 or I222 results in multidrug resistance, and when the replacements occur together, the sensitivity to NA inhibitors (NAI) is reduced severely. Using crystallographic studies, we showed that E119 replacement results in a loss of hydrogen bonding to oseltamivir and zanamivir, whereas I222 replacement results in a change in the hydrophobic environment that is critical for oseltamivir binding. Moreover, we found that MS-257, a zanamivir-oseltamivir hybrid inhibitor, is less susceptible to drug resistance. The binding mode of MS-257 shows that increased hydrogen bonding interactions between the inhibitor and NA active site anchor the inhibitor within the active site and allow adjustments in response to active-site modifications. Such stability is likely responsible for the observed reduced susceptibility to drug resistance. MS-257 serves as a next-generation anti-influenza virus drug candidate and serves also as a scaffold for further design of NAIs.

IMPORTANCE

Oseltamivir and zanamivir are the two major antiviral drugs available for the treatment of influenza virus infections. However, multidrug-resistant viruses have emerged in clinical cases, which pose a challenge for the development of new drugs. N1 and N2 subtypes exist in the viruses which cause seasonal epidemics and past pandemics. Although N1 drug resistance is well characterized, the molecular mechanisms underlying N2 drug resistance are unknown. A previous report showed that an N2 E119V/I222L dual mutant conferred drug resistance to seasonal influenza virus. Here, we confirm that these substitutions result in multidrug resistance and dramatically reduced sensitivity to NAI. We further elucidate the molecular mechanism underlying N2 drug resistance by solving crystal structures of the N2 E119V and I222L mutants and the dual mutant. Most importantly, we found that a novel oseltamivir-zanamivir hybrid inhibitor, MS-257, remains more effective against drug-resistant N2 and is a promising candidate as a next-generation anti-influenza virus drug.

摘要

未标记

流感病毒神经氨酸酶(NA)耐药性是防范流行性和大流行性流感病毒感染面临的挑战之一。含N1和N2的甲型流感病毒是季节性流行和既往大流行的主要病原体。甲型流感病毒N1 NA耐药性的结构和功能基础已得到充分表征。然而,N2毒株的耐药性尚不清楚。在此,我们证实N2的E119或I222发生置换会导致多药耐药,当这两种置换同时发生时,对NA抑制剂(NAI)的敏感性会严重降低。通过晶体学研究,我们发现E119置换导致与奥司他韦和扎那米韦的氢键丢失,而I222置换导致对奥司他韦结合至关重要的疏水环境发生变化。此外,我们发现扎那米韦 - 奥司他韦杂合抑制剂MS - 257对耐药性不太敏感。MS - 257的结合模式表明,抑制剂与NA活性位点之间增加的氢键相互作用将抑制剂锚定在活性位点内,并允许对活性位点修饰做出调整。这种稳定性可能是观察到的耐药性降低的原因。MS - 257可作为下一代抗流感病毒药物候选物,也可作为进一步设计NAI的支架。

重要性

奥司他韦和扎那米韦是可用于治疗流感病毒感染的两种主要抗病毒药物。然而,临床病例中已出现多药耐药病毒,这对新药开发构成挑战。导致季节性流行和既往大流行的病毒中存在N1和N2亚型。虽然N1耐药性已得到充分表征,但N2耐药性的分子机制尚不清楚。先前的一份报告显示,N2 E119V/I222L双突变体赋予了对季节性流感病毒的耐药性。在此,我们证实这些置换会导致多药耐药并显著降低对NAI的敏感性。我们通过解析N2 E119V和I222L突变体以及双突变体的晶体结构,进一步阐明了N2耐药性的分子机制。最重要的是,我们发现一种新型的奥司他韦 - 扎那米韦杂合抑制剂MS - 257对耐药性N2仍然更有效,并且是一种有前途的下一代抗流感病毒药物候选物。

相似文献

引用本文的文献

9
Influenza A Virus Neuraminidase Inhibitors.甲型流感病毒神经氨酸酶抑制剂。
Methods Mol Biol. 2022;2556:321-353. doi: 10.1007/978-1-0716-2635-1_21.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验