Suppr超能文献

模拟MjNhaP1转运蛋白的功能。

Simulating the Function of the MjNhaP1 Transporter.

作者信息

Alhadeff Raphael, Warshel Arieh

机构信息

Department of Chemistry, University of Southern California , SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, United States.

出版信息

J Phys Chem B. 2016 Oct 27;120(42):10951-10958. doi: 10.1021/acs.jpcb.6b08126. Epub 2016 Oct 14.

Abstract

The structures of transport proteins have been steadily revealed in the last few decades, and yet the conversion of this information into molecular-level understanding of their function is still lagging behind. In this study, we try to elucidate how the action of the archaeal sodium/proton antiporter MjNhaP1 depends on its structure-energy relationship. To this end, we calculate the binding energies of its substrates and evaluate the conformational change barrier, focusing on the rotation of the catalytic residue D161. We find that sodium ions and protons compete against a common binding site and that the accessibility of this binding site is restricted to either the inside or outside of the cell. We suggest that the rotation of D161 χ1 angle correlates with the conformational change and is energetically unfavorable when D161 does not bind any substrate. This restriction ensures coupling between the sodium ions and the protons, allowing MjNhaP1 and probably other similar transporters to exchange substrates with minimal leak. Using Monte Carlo simulations we demonstrate the feasibility of our model. Overall we present a complete picture that reproduces the electroneutral (at 1:1 substrate ratio) and coupled transport activity of MjNhaP1 including the energetic basis for the criteria provided by Jardetzky half a century ago.

摘要

在过去几十年里,转运蛋白的结构已逐步被揭示,然而将这些信息转化为对其功能的分子水平理解仍滞后。在本研究中,我们试图阐明古菌钠/质子反向转运蛋白MjNhaP1的作用如何依赖于其结构 - 能量关系。为此,我们计算其底物的结合能并评估构象变化能垒,重点关注催化残基D161的旋转。我们发现钠离子和质子竞争一个共同的结合位点,且该结合位点的可及性仅限于细胞内部或外部。我们认为D161 χ1角的旋转与构象变化相关,并且当D161不结合任何底物时在能量上是不利的。这种限制确保了钠离子和质子之间的偶联,使MjNhaP1以及可能其他类似的转运蛋白能够以最小的泄漏交换底物。通过蒙特卡罗模拟,我们证明了我们模型的可行性。总体而言,我们呈现了一幅完整的图景,再现了MjNhaP1的电中性(底物比例为1:1时)和偶联转运活性,包括半个世纪前雅德茨基提出的标准的能量基础。

相似文献

1
Simulating the Function of the MjNhaP1 Transporter.
J Phys Chem B. 2016 Oct 27;120(42):10951-10958. doi: 10.1021/acs.jpcb.6b08126. Epub 2016 Oct 14.
2
Ion Binding and Selectivity of the Na/H Antiporter MjNhaP1 from Experiment and Simulation.
J Phys Chem B. 2020 Jan 16;124(2):336-344. doi: 10.1021/acs.jpcb.9b08552. Epub 2020 Jan 2.
3
Infrared spectroscopic study of the structural and functional properties of the Na(+)/H(+) antiporter MjNhaP1 from Methanococcus jannaschii.
Biochim Biophys Acta. 2009 Jun;1787(6):730-7. doi: 10.1016/j.bbabio.2009.04.002. Epub 2009 Apr 9.
4
Simulating the function of sodium/proton antiporters.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12378-83. doi: 10.1073/pnas.1516881112. Epub 2015 Sep 21.
6
Structural elements required for coupling ion and substrate transport in the neurotransmitter transporter homolog LeuT.
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):E8854-E8862. doi: 10.1073/pnas.1716870115. Epub 2018 Sep 4.
7
pH-induced structural change in a sodium/proton antiporter from Methanococcus jannaschii.
EMBO J. 2005 Aug 3;24(15):2720-9. doi: 10.1038/sj.emboj.7600727. Epub 2005 Jul 14.
8
Multiscale Simulations Reveal Key Aspects of the Proton Transport Mechanism in the ClC-ec1 Antiporter.
Biophys J. 2016 Mar 29;110(6):1334-45. doi: 10.1016/j.bpj.2016.02.014.
10
Single-file diffusion and neurotransmitter transporters: Hodgkin and Keynes model revisited.
Biosystems. 2001 Sep-Oct;62(1-3):57-66. doi: 10.1016/s0303-2647(01)00137-x.

引用本文的文献

1
An angular motion of a conserved four-helix bundle facilitates alternating access transport in the TtNapA and EcNhaA transporters.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31850-31860. doi: 10.1073/pnas.2002710117. Epub 2020 Nov 30.
2
ZnT2 is an electroneutral proton-coupled vesicular antiporter displaying an apparent stoichiometry of two protons per zinc ion.
PLoS Comput Biol. 2019 Mar 20;15(3):e1006882. doi: 10.1371/journal.pcbi.1006882. eCollection 2019 Mar.
3
On the control of the proton current in the voltage-gated proton channel Hv1.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10321-10326. doi: 10.1073/pnas.1809766115. Epub 2018 Sep 25.
4
Reexamining the origin of the directionality of myosin V.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10426-10431. doi: 10.1073/pnas.1711214114. Epub 2017 Sep 11.

本文引用的文献

1
Crystal structures reveal the molecular basis of ion translocation in sodium/proton antiporters.
Nat Struct Mol Biol. 2016 Mar;23(3):248-55. doi: 10.1038/nsmb.3164. Epub 2016 Feb 1.
2
The Pfam protein families database: towards a more sustainable future.
Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85. doi: 10.1093/nar/gkv1344. Epub 2015 Dec 15.
3
Simulating the function of sodium/proton antiporters.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12378-83. doi: 10.1073/pnas.1516881112. Epub 2015 Sep 21.
4
Role of intestinal Na(+)/H(+) exchanger inhibition in the prevention of cardiovascular and kidney disease.
Ann Transl Med. 2015 May;3(7):91. doi: 10.3978/j.issn.2305-5839.2015.02.26.
5
Computational characterization of structural dynamics underlying function in active membrane transporters.
Curr Opin Struct Biol. 2015 Apr;31:96-105. doi: 10.1016/j.sbi.2015.04.001. Epub 2015 Apr 27.
6
A universal mechanism for transport and regulation of CPA sodium proton exchangers.
Biol Chem. 2015 Sep;396(9-10):1091-6. doi: 10.1515/hsz-2014-0278.
7
Structure and transport mechanism of the sodium/proton antiporter MjNhaP1.
Elife. 2014 Nov 26;3:e03583. doi: 10.7554/eLife.03583.
8
Structure and substrate ion binding in the sodium/proton antiporter PaNhaP.
Elife. 2014 Nov 26;3:e03579. doi: 10.7554/eLife.03579.
9
Crystal structure of the sodium-proton antiporter NhaA dimer and new mechanistic insights.
J Gen Physiol. 2014 Dec;144(6):529-44. doi: 10.1085/jgp.201411219.
10
Species differences in bacterial NhaA Na+/H+ exchangers.
FEBS Lett. 2014 Aug 25;588(17):3111-6. doi: 10.1016/j.febslet.2014.05.066. Epub 2014 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验