Hendriks Koen H, Robinson Sophia G, Braten Miles N, Sevov Christo S, Helms Brett A, Sigman Matthew S, Minteer Shelley D, Sanford Melanie S
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.
Joint Center for Energy Storage Research (JCESR), 9700 S. Cass Avenue, Argonne, Illinois 60439, United States.
ACS Cent Sci. 2018 Feb 28;4(2):189-196. doi: 10.1021/acscentsci.7b00544. Epub 2018 Jan 17.
Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. These studies provide a template for the future design of other redox-active oligomers for this application.
非水氧化还原液流电池(NRFBs)是一种极具吸引力的技术,可用于存储间歇性可再生能源产生的能量。在这些电池中,电能存储在氧化还原活性分子(称为阴极电解液和阳极电解液)的电解液中,并从其中提取,这些电解液会通过一个电化学流动电池。为避免电池自放电,阳极电解液和阴极电解液溶液必须在流动电池中用隔膜隔开。该隔膜可防止氧化还原活性分子交叉,同时允许电荷平衡离子轻松传输。该领域一个尚未解决的关键挑战是设计氧化还原活性分子/隔膜对,使其能够实现有效的电解液分离,同时保持最佳的电池性能。在此,我们展示了基于三(二烷基氨基)环丙烯鎓(CP)盐的低聚阴极电解液的开发,这些低聚阴极电解液是专门为与由固有微孔聚合物(PIMs)组成的尺寸排阻隔膜配对而设计的。我们进行了系统研究,以评估低聚物尺寸/结构对液流电池性能至关重要的性能的影响,包括循环稳定性、充电容量、溶解度、电子转移动力学和交叉速率。这些研究已确定了一种CP衍生的四聚体,相对于单体对应物,其所有这些性能都相当或显著改善。最后,通过将这种四聚体阴极电解液与PIM隔膜配对,展示了一个概念验证液流电池。循环6天后,未检测到交叉,证明了这种方法的前景。这些研究为该应用中其他氧化还原活性低聚物的未来设计提供了一个模板。