Suppr超能文献

广谱抗菌和抗生物膜银纳米颗粒的生物制造

Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles.

作者信息

Qayyum Shariq, Khan Asad Ullah

机构信息

Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.

出版信息

IET Nanobiotechnol. 2016 Oct;10(5):349-357. doi: 10.1049/iet-nbt.2015.0091.

Abstract

Silver nanoparticles (AgNPs) were biosynthesized via a green route using ten different plants extracts (GNP1- , GNP2-, GNP3- , GNP4-, GNP5-, GNP6-, GNP7-, GNP8- , GNP9- GNP10-). AgNPs were tested against drug resistant microbes and their biofilms. These nanoparticles (NPs) were characterised using UV-vis spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction and Image software. Most of the AgNPs were distributed over a range of 1 of 60 nm size. The results indicated that AgNPs were antibacterial in nature without differentiating between resistant or susceptible strains. Moreover, the effect was more prominent on Gram negative bacteria then Gram positive bacteria and fungus. AgNPs inhibited various classes of microbes with different concentration. It was also evident from the results that the origin or nature of extract did not affect the activity of the NPs. Protein and carbohydrate leakage assays confirmed that the cells lysis is one of the main mechanisms for the killing of microbes by green AgNPs. This study suggests that the action of AgNPs on microbial cells resulted into cell lysis and DNA damage. Excellent microbial biofilm inhibition was also seen by these green AgNPs. AgNPs have proved their candidature as a potential antibacterial and antibiofilm agent against MDR microbes.

摘要

通过绿色途径,利用十种不同植物提取物(GNP1-、GNP2-、GNP3-、GNP4-、GNP5-、GNP6-、GNP7-、GNP8-、GNP9-、GNP10-)生物合成了银纳米颗粒(AgNPs)。对AgNPs进行了抗耐药微生物及其生物膜的测试。使用紫外可见光谱、透射电子显微镜、傅里叶变换红外光谱、X射线衍射和图像软件对这些纳米颗粒(NPs)进行了表征。大多数AgNPs的尺寸分布在1至60纳米范围内。结果表明,AgNPs具有抗菌性质,对耐药菌株或敏感菌株没有区别。此外,对革兰氏阴性菌的作用比对革兰氏阳性菌和真菌更显著。AgNPs以不同浓度抑制各类微生物。结果还表明,提取物的来源或性质不影响NPs的活性。蛋白质和碳水化合物泄漏试验证实,细胞裂解是绿色AgNPs杀灭微生物的主要机制之一。这项研究表明,AgNPs对微生物细胞的作用导致细胞裂解和DNA损伤。这些绿色AgNPs对微生物生物膜也有出色的抑制作用。AgNPs已证明其作为一种针对多重耐药微生物的潜在抗菌和抗生物膜剂的候选资格。

相似文献

1
Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles.
IET Nanobiotechnol. 2016 Oct;10(5):349-357. doi: 10.1049/iet-nbt.2015.0091.
2
Biosynthesis of Silver Nanoparticles Using Culture Supernatant of sp. ARY1 and Their Antibacterial Activity.
Int J Nanomedicine. 2020 Oct 28;15:8295-8310. doi: 10.2147/IJN.S274535. eCollection 2020.
7
Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus .
Int J Nanomedicine. 2019 May 9;14:3427-3438. doi: 10.2147/IJN.S200817. eCollection 2019.
8
Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract.
Spectrochim Acta A Mol Biomol Spectrosc. 2015 May 5;142:339-43. doi: 10.1016/j.saa.2015.01.062. Epub 2015 Feb 14.

引用本文的文献

3
The role of nanocomposites against biofilm infections in humans.
Front Cell Infect Microbiol. 2023 Feb 28;13:1104615. doi: 10.3389/fcimb.2023.1104615. eCollection 2023.
4
Challenges of antibiotic resistance biofilms and potential combating strategies: a review.
3 Biotech. 2021 Apr;11(4):169. doi: 10.1007/s13205-021-02707-w. Epub 2021 Mar 16.
5
Studies on antimicrobial and wound healing applications of gauze coated with CHX-Ag hybrid NPs.
IET Nanobiotechnol. 2020 Feb;14(1):14-18. doi: 10.1049/iet-nbt.2019.0187.
6
New Innovations in the Treatment of PJI and Biofilms-Clinical and Preclinical Topics.
Curr Rev Musculoskelet Med. 2018 Sep;11(3):380-388. doi: 10.1007/s12178-018-9500-5.
7
Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles.
PLoS One. 2017 Aug 3;12(8):e0181363. doi: 10.1371/journal.pone.0181363. eCollection 2017.

本文引用的文献

1
Retracted: Characterization of enhanced antibacterial effects of novel silver nanoparticles.
Nanotechnology. 2007 May 4;18(22). doi: 10.1088/0957-4484/18/22/225103.
2
Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: A proteomic approach.
Biochem Biophys Res Commun. 2016 Jun 10;474(4):652-659. doi: 10.1016/j.bbrc.2016.04.145. Epub 2016 May 1.
4
Metal nanobullets for multidrug resistant bacteria and biofilms.
Adv Drug Deliv Rev. 2014 Nov 30;78:88-104. doi: 10.1016/j.addr.2014.08.004. Epub 2014 Aug 17.
5
Detection of bla(NDM-4) in Escherichia coli from hospital sewage.
J Med Microbiol. 2014 Oct;63(Pt 10):1404-1406. doi: 10.1099/jmm.0.076026-0. Epub 2014 Jul 28.
8
Synthesis of metallic nanoparticles using plant extracts.
Biotechnol Adv. 2013 Mar-Apr;31(2):346-56. doi: 10.1016/j.biotechadv.2013.01.003. Epub 2013 Jan 12.
9
Nanodrugs: optimism for emerging trend of multidrug resistance.
Int J Nanomedicine. 2012;7:4323-4. doi: 10.2147/IJN.S35288. Epub 2012 Aug 6.
10
Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.
Spectrochim Acta A Mol Biomol Spectrosc. 2012 Nov;97:490-4. doi: 10.1016/j.saa.2012.06.038. Epub 2012 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验