文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 sp. ARY1 的培养上清液合成银纳米粒子及其抗菌活性。

Biosynthesis of Silver Nanoparticles Using Culture Supernatant of sp. ARY1 and Their Antibacterial Activity.

机构信息

Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.

Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, South Korea.

出版信息

Int J Nanomedicine. 2020 Oct 28;15:8295-8310. doi: 10.2147/IJN.S274535. eCollection 2020.


DOI:10.2147/IJN.S274535
PMID:33149577
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7604554/
Abstract

PURPOSE: In this study, silver nanoparticles (AgNPs) were biosynthesized using culture supernatant of strain sp. ARY1, characterized and their antibacterial activity was investigated against Gram-negative bacteria and METHODS: The strain sp. ARY1 was isolated from river Yamuna, Delhi and used for biosynthesis of AgNPs via extracellular approach. Biosynthesized AgNPs were characterized by UV-Visible (UV-Vis) spectrophotometer, fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray (EDX), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Antibacterial activity of AgNPs was determined by well diffusion, broth microdilution and streaking plate assay to determine the zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), respectively. The effect of AgNPs on treated bacteria was investigated by electron microscopy analysis. Further, the biocompatibility of AgNPs was tested against mice erythrocytes (RBC) by hemolytic assay. RESULTS: The UV-Vis spectral analysis revealed absorption maxima at 450 nm which confirmed the formation of AgNPs. The FTIR analysis suggested the involvement of various supernatant biomolecules, as reducing and capping agents in the synthesis of AgNPs. The XRD and EDX analysis confirmed the crystalline and metallic nature of AgNPs, respectively. The TEM and SEM analysis showed nanoparticles were spherical with an average size of 38 nm. The biosynthesized AgNPs inhibited the growth and formed a clear zone of inhibition (ZOI) against tested Gram-negative strains. The MIC and MBC were determined as 8-16 µg/mL and 32 µg/mL, respectively. Further, electron microscopy analysis of treated cells showed that AgNPs can damage the outer membrane, release of cytoplasmic contents, and alter the normal morphology of Gram-negative bacteria, leading to cell death. The hemolytic assay indicated that the biosynthesized AgNPs were biocompatible at low dose concentrations. CONCLUSION: This study demonstrates an eco-friendly process for extracellular synthesis of AgNPs using sp. ARY1 and these AgNPs exhibited excellent antibacterial activity, which may be used to combat Gram-negative pathogens.

摘要

目的:在本研究中,使用 sp. ARY1 的培养上清液生物合成了银纳米粒子(AgNPs),并对其进行了表征,研究了其对革兰氏阴性细菌 和 的抗菌活性。

方法:从德里亚穆纳河分离出 sp. ARY1 菌株,并通过胞外途径用其生物合成 AgNPs。用紫外-可见分光光度计(UV-Vis)、傅里叶变换红外光谱(FTIR)、X 射线衍射(XRD)、能谱(EDX)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)对生物合成的 AgNPs 进行了表征。采用孔扩散法、肉汤微量稀释法和划线平板法分别测定抑菌圈直径(ZOI)、最小抑菌浓度(MIC)和最小杀菌浓度(MBC),以确定 AgNPs 的抗菌活性。通过电子显微镜分析研究了 AgNPs 对处理过的细菌的影响。此外,通过溶血试验测试了 AgNPs 对小鼠红细胞(RBC)的生物相容性。

结果:紫外-可见光谱分析显示,在 450nm 处有最大吸收峰,证实了 AgNPs 的形成。FTIR 分析表明,在 AgNPs 的合成中,上清液中的各种生物分子作为还原剂和封端剂参与了反应。XRD 和 EDX 分析分别证实了 AgNPs 的结晶性和金属性质。TEM 和 SEM 分析表明,纳米粒子为球形,平均粒径为 38nm。生物合成的 AgNPs 抑制了革兰氏阴性菌的生长,并形成了清晰的抑菌圈(ZOI)。MIC 和 MBC 分别确定为 8-16μg/ml 和 32μg/ml。此外,对处理过的细胞的电子显微镜分析表明,AgNPs 可以破坏革兰氏阴性菌的外膜,释放细胞质内容物,并改变其正常形态,导致细胞死亡。溶血试验表明,生物合成的 AgNPs 在低剂量浓度时具有生物相容性。

结论:本研究采用 sp. ARY1 进行了一种环保的胞外合成 AgNPs 的方法,该方法合成的 AgNPs 表现出优异的抗菌活性,可用于对抗革兰氏阴性病原体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/57de35e5401d/IJN-15-8295-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/8ace857bb772/IJN-15-8295-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/a8cad53f576b/IJN-15-8295-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/81c9fa845f80/IJN-15-8295-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/d87c82cc1f3a/IJN-15-8295-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/09d3d78d7723/IJN-15-8295-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/a9f5f1107104/IJN-15-8295-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/46dbfda005bf/IJN-15-8295-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/2a4b0b6cf2ed/IJN-15-8295-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/c63c48fc1ce2/IJN-15-8295-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/229d6bc8b1c1/IJN-15-8295-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/57de35e5401d/IJN-15-8295-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/8ace857bb772/IJN-15-8295-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/a8cad53f576b/IJN-15-8295-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/81c9fa845f80/IJN-15-8295-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/d87c82cc1f3a/IJN-15-8295-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/09d3d78d7723/IJN-15-8295-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/a9f5f1107104/IJN-15-8295-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/46dbfda005bf/IJN-15-8295-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/2a4b0b6cf2ed/IJN-15-8295-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/c63c48fc1ce2/IJN-15-8295-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/229d6bc8b1c1/IJN-15-8295-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b903/7604554/57de35e5401d/IJN-15-8295-g0011.jpg

相似文献

[1]
Biosynthesis of Silver Nanoparticles Using Culture Supernatant of sp. ARY1 and Their Antibacterial Activity.

Int J Nanomedicine. 2020-10-28

[2]
Anti-Bacterial and Anti-Candidal Activity of Silver Nanoparticles Biosynthesized Using spp. MS5 Culture Supernatant.

Biomolecules. 2020-6-22

[3]
Biosynthesis of Silver Nanoparticles from : Enhancement of Antibacterial, Wound Healing, Antidiabetic and Antioxidant Activities.

Int J Nanomedicine. 2019-12-11

[4]
Biosynthesis, Characterization and Antibacterial Application of Novel Silver Nanoparticles against Drug Resistant Pathogenic and Enteritidis.

Molecules. 2021-10-2

[5]
Ecofriendly phytofabrication of silver nanoparticles using aqueous extract of Cuphea carthagenensis and their antioxidant potential and antibacterial activity against clinically important human pathogens.

Chemosphere. 2022-8

[6]
Bacterial Mediated Rapid and Facile Synthesis of Silver Nanoparticles and Their Antimicrobial Efficacy against Pathogenic Microorganisms.

Materials (Basel). 2021-5-18

[7]
Eco-Friendly and Facile Synthesis of Antioxidant, Antibacterial and Anticancer Dihydromyricetin-Mediated Silver Nanoparticles.

Int J Nanomedicine. 2021

[8]
Biogenic Synthesis, Characterization and Antibacterial Properties of Silver Nanoparticles against Human Pathogens.

J Oleo Sci. 2022-2-3

[9]
Facile Synthesis, Characterization, and Antimicrobial Assessment of a Silver/Montmorillonite Nanocomposite as an Effective Antiseptic against Foodborne Pathogens for Promising Food Protection.

Molecules. 2023-4-25

[10]
Biogenic Synthesis of Silver Nanoparticles using (Decne): Assessment of their Antioxidant, Antimicrobial and Cytotoxic Activities.

Pharm Nanotechnol. 2023

引用本文的文献

[1]
Silver nanoparticles as next-generation antimicrobial agents: mechanisms, challenges, and innovations against multidrug-resistant bacteria.

Front Cell Infect Microbiol. 2025-8-14

[2]
Salicylic Acid-Mediated Silver Nanoparticle Green Synthesis: Characterization, Enhanced Antimicrobial, and Antibiofilm Efficacy.

Pharmaceutics. 2025-4-18

[3]
Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics.

Front Microbiol. 2024-7-31

[4]
Anticandidal Activity of a Siderophore from Marine Endophyte Mgrv7.

Antibiotics (Basel). 2024-4-10

[5]
Optimization of the biosynthesis of silver nanoparticles using bacterial extracts and their antimicrobial potential.

Biotechnol Rep (Amst). 2023-10-29

[6]
Preparation and characterization of spiked gold nanobipyramids and its antibacterial effect on methicillin-resistant Staphylococcus aureus and methicillin-sensitive Staphylococcus aureus.

J Genet Eng Biotechnol. 2023-11-15

[7]
Biosynthesis of Silver Nanoparticles Using the Biofilm Supernatant of PA75 and Evaluation of Their Antibacterial, Antibiofilm, and Antitumor Activities.

Int J Nanomedicine. 2023

[8]
Biogenic Silver Nanoparticles Produced by Soil Rare Actinomycetes and Their Significant Effect on -derived mycotoxins.

Microorganisms. 2023-4-12

[9]
Antimicrobial Activity of Green Synthesized Silver Nanoparticles Using Waste Leaves of (Doum Palm).

Microorganisms. 2023-3-22

[10]
Biosynthesis of Metal and Metal Oxide Nanoparticles Using Microbial Cultures: Mechanisms, Antimicrobial Activity and Applications to Cultural Heritage.

Microorganisms. 2023-2-2

本文引用的文献

[1]
A review on the biosynthesis of metal and metal salt nanoparticles by microbes.

RSC Adv. 2019-4-26

[2]
Anti-Bacterial and Anti-Candidal Activity of Silver Nanoparticles Biosynthesized Using spp. MS5 Culture Supernatant.

Biomolecules. 2020-6-22

[3]
A Potent and Safer Anticancer and Antibacterial -Based Green Synthesized Silver Nanoparticle.

Int J Nanomedicine. 2020-5-28

[4]
Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa.

Heliyon. 2020-5-15

[5]
Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview.

Biol Trace Elem Res. 2021-1

[6]
Green Synthesis of Silver Nanoparticles Using MAHUQ-39 and Their Antimicrobial Mechanisms Investigation against Drug Resistant Human Pathogens.

Int J Mol Sci. 2020-2-22

[7]
Extracellular Synthesis and Characterization of Silver Nanoparticles-Antibacterial Activity against Multidrug-Resistant Bacterial Strains.

Nanomaterials (Basel). 2020-2-19

[8]
Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria sp. extract: Their Antibacterial and Cytotoxicity Effects.

Int J Nanomedicine. 2020-1-8

[9]
Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Yeast Extract as Reducing and Capping Agents.

Nanoscale Res Lett. 2020-1-16

[10]
Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica.

Sci Rep. 2019-9-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索