Suppr超能文献

多基因集联合分析检验(Multi-SKAT):用于检测罕见变异与多种表型关联的通用框架。

Multi-SKAT: General framework to test for rare-variant association with multiple phenotypes.

作者信息

Dutta Diptavo, Scott Laura, Boehnke Michael, Lee Seunggeun

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.

Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan.

出版信息

Genet Epidemiol. 2019 Feb;43(1):4-23. doi: 10.1002/gepi.22156. Epub 2018 Oct 8.

Abstract

In genetic association analysis, a joint test of multiple distinct phenotypes can increase power to identify sets of trait-associated variants within genes or regions of interest. Existing multiphenotype tests for rare variants make specific assumptions about the patterns of association with underlying causal variants, and the violation of these assumptions can reduce power to detect association. Here, we develop a general framework for testing pleiotropic effects of rare variants on multiple continuous phenotypes using multivariate kernel regression (Multi-SKAT). Multi-SKAT models affect sizes of variants on the phenotypes through a kernel matrix and perform a variance component test of association. We show that many existing tests are equivalent to specific choices of kernel matrices with the Multi-SKAT framework. To increase power of detecting association across tests with different kernel matrices, we developed a fast and accurate approximation of the significance of the minimum observed P value across tests. To account for related individuals, our framework uses random effects for the kinship matrix. Using simulated data and amino acid and exome-array data from the METabolic Syndrome In Men (METSIM) study, we show that Multi-SKAT can improve power over single-phenotype SKAT-O test and existing multiple-phenotype tests, while maintaining Type I error rate.

摘要

在基因关联分析中,对多个不同表型进行联合检验可提高在感兴趣的基因或区域内识别与性状相关的变异集的效能。现有的针对罕见变异的多表型检验对与潜在因果变异的关联模式做出了特定假设,而违反这些假设会降低检测关联的效能。在此,我们开发了一个通用框架,即使用多变量核回归(Multi-SKAT)来检验罕见变异对多个连续表型的多效性作用。Multi-SKAT通过一个核矩阵对变异对表型的效应大小进行建模,并进行关联的方差成分检验。我们表明,许多现有检验等同于在Multi-SKAT框架下对核矩阵的特定选择。为了提高在使用不同核矩阵的检验中检测关联的效能,我们开发了一种快速且准确的方法来近似检验中观察到的最小P值的显著性。为了考虑亲属个体,我们的框架对亲缘关系矩阵使用随机效应。利用来自男性代谢综合征(METSIM)研究的模拟数据、氨基酸数据和外显子阵列数据,我们表明Multi-SKAT相较于单表型SKAT-O检验和现有的多表型检验能够提高效能,同时保持I型错误率。

相似文献

9
Rare variant association test with multiple phenotypes.针对多种表型的罕见变异关联测试。
Genet Epidemiol. 2017 Apr;41(3):198-209. doi: 10.1002/gepi.22021. Epub 2016 Dec 31.
10
Sequence Kernel Association Test of Multiple Continuous Phenotypes.多个连续表型的序列核关联检验
Genet Epidemiol. 2016 Feb;40(2):91-100. doi: 10.1002/gepi.21945. Epub 2016 Jan 18.

引用本文的文献

本文引用的文献

4
Rare variant association test with multiple phenotypes.针对多种表型的罕见变异关联测试。
Genet Epidemiol. 2017 Apr;41(3):198-209. doi: 10.1002/gepi.22021. Epub 2016 Dec 31.
7
9
Sequence Kernel Association Test of Multiple Continuous Phenotypes.多个连续表型的序列核关联检验
Genet Epidemiol. 2016 Feb;40(2):91-100. doi: 10.1002/gepi.21945. Epub 2016 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验