Yan Qi, Tiwari Hemant K, Yi Nengjun, Gao Guimin, Zhang Kui, Lin Wan-Yu, Lou Xiang-Yang, Cui Xiangqin, Liu Nianjun
Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Ala., USA.
Hum Hered. 2015;79(2):60-8. doi: 10.1159/000375409. Epub 2015 Mar 10.
The existing methods for identifying multiple rare variants underlying complex diseases in family samples are underpowered. Therefore, we aim to develop a new set-based method for an association study of dichotomous traits in family samples.
We introduce a framework for testing the association of genetic variants with diseases in family samples based on a generalized linear mixed model. Our proposed method is based on a kernel machine regression and can be viewed as an extension of the sequence kernel association test (SKAT and famSKAT) for application to family data with dichotomous traits (F-SKAT).
Our simulation studies show that the original SKAT has inflated type I error rates when applied directly to family data. By contrast, our proposed F-SKAT has the correct type I error rate. Furthermore, in all of the considered scenarios, F-SKAT, which uses all family data, has higher power than both SKAT, which uses only unrelated individuals from the family data, and another method, which uses all family data.
We propose a set-based association test that can be used to analyze family data with dichotomous phenotypes while handling genetic variants with the same or opposite directions of effects as well as any types of family relationships.
在家族样本中识别复杂疾病潜在多个罕见变异的现有方法效能不足。因此,我们旨在开发一种新的基于集合的方法,用于家族样本中二分性状的关联研究。
我们引入了一个基于广义线性混合模型来检验家族样本中基因变异与疾病关联的框架。我们提出的方法基于核机器回归,可视为序列核关联检验(SKAT和famSKAT)的扩展,用于应用于具有二分性状的家族数据(F - SKAT)。
我们的模拟研究表明,原始的SKAT直接应用于家族数据时会使I型错误率膨胀。相比之下,我们提出的F - SKAT具有正确的I型错误率。此外,在所有考虑的场景中,使用所有家族数据的F - SKAT比仅使用家族数据中无关个体的SKAT以及另一种使用所有家族数据的方法具有更高的效能。
我们提出了一种基于集合的关联检验,可用于分析具有二分表型的家族数据,同时处理具有相同或相反效应方向的基因变异以及任何类型的家族关系。