Choi Sang Hyun, Lee Jeong Hyun, Choi Young Jun, Park Ji Eun, Sung Yu Sub, Kim Namkug, Baek Jung Hwan
1 Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul 138-736, Korea.
AJR Am J Roentgenol. 2017 Jan;208(1):42-47. doi: 10.2214/AJR.16.16127. Epub 2016 Sep 28.
This study aimed to explore the added value of histogram analysis of the ratio of initial to final 90-second time-signal intensity AUC (AUCR) for differentiating local tumor recurrence from contrast-enhancing scar on follow-up dynamic contrast-enhanced T1-weighted perfusion MRI of patients treated for head and neck squamous cell carcinoma (HNSCC).
AUCR histogram parameters were assessed among tumor recurrence (n = 19) and contrast-enhancing scar (n = 27) at primary sites and compared using the t test. ROC analysis was used to determine the best differentiating parameters. The added value of AUCR histogram parameters was assessed when they were added to inconclusive conventional MRI results.
Histogram analysis showed statistically significant differences in the 50th, 75th, and 90th percentiles of the AUCR values between the two groups (p < 0.05). The 90th percentile of the AUCR values (AUCR) was the best predictor of local tumor recurrence (AUC, 0.77; 95% CI, 0.64-0.91) with an estimated cutoff of 1.02. AUCR increased sensitivity by 11.7% over that of conventional MRI alone when added to inconclusive results.
Histogram analysis of AUCR can improve the diagnostic yield for local tumor recurrence during surveillance after treatment for HNSCC.
本研究旨在探讨头颈部鳞状细胞癌(HNSCC)患者治疗后随访动态对比增强T1加权灌注MRI中,初始与最终90秒时间-信号强度曲线下面积比值(AUCR)的直方图分析在鉴别局部肿瘤复发与对比增强瘢痕方面的附加价值。
评估原发部位肿瘤复发组(n = 19)和对比增强瘢痕组(n = 27)的AUCR直方图参数,并采用t检验进行比较。采用ROC分析确定最佳鉴别参数。当将AUCR直方图参数添加到不确定的传统MRI结果中时,评估其附加价值。
直方图分析显示,两组之间AUCR值的第50、75和90百分位数存在统计学显著差异(p < 0.05)。AUCR值的第90百分位数(AUCR)是局部肿瘤复发的最佳预测指标(AUC,0.77;95% CI,0.64 - 0.91),估计截断值为1.02。当添加到不确定结果中时,AUCR比单独使用传统MRI的敏感性提高了11.7%。
AUCR的直方图分析可提高HNSCC治疗后监测期间局部肿瘤复发的诊断率。