Kirui James, Mondal Arindam, Mehle Andrew
Graduate Program in Cellular & Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Medical Microbiology & Immunology, University of Wisconsin-Madison Madison, Wisconsin, USA.
J Virol. 2016 Nov 14;90(23):10906-10914. doi: 10.1128/JVI.01829-16. Print 2016 Dec 1.
The influenza A virus polymerase plays an essential role in the virus life cycle, directing synthesis of viral mRNAs and genomes. It is a trimeric complex composed of subunits PA, PB1, and PB2 and associates with viral RNAs and nucleoprotein (NP) to form higher-order ribonucleoprotein (RNP) complexes. The polymerase is regulated temporally over the course of infection to ensure coordinated expression of viral genes as well as replication of the viral genome. Various host factors and processes have been implicated in regulation of the IAV polymerase function, including posttranslational modifications; however, the mechanisms are not fully understood. Here we demonstrate that ubiquitination plays an important role in stimulating polymerase activity. We show that all protein subunits in the RNP are ubiquitinated, but ubiquitination does not significantly alter protein levels. Instead, ubiquitination and an active proteasome enhance polymerase activity. Expression of ubiquitin upregulates polymerase function in a dose-dependent fashion, causing increased accumulation of viral RNA (vRNA), cRNA, and mRNA and enhanced viral gene expression during infection. Ubiquitin expression directly affects polymerase activity independent of nucleoprotein (NP) or ribonucleoprotein (RNP) assembly. Ubiquitination and the ubiquitin-proteasome pathway play key roles during multiple stages of influenza virus infection, and data presented here now demonstrate that these processes modulate viral polymerase activity independent of protein degradation. The cellular ubiquitin-proteasome pathway impacts steps during the entire influenza virus life cycle. Ubiquitination suppresses replication by targeting viral proteins for degradation and stimulating innate antiviral signaling pathways. Ubiquitination also enhances replication by facilitating viral entry and virion disassembly. We identify here an addition proviral role of the ubiquitin-proteasome system, showing that all of the proteins in the viral replication machinery are subject to ubiquitination and this is crucial for optimal viral polymerase activity. Manipulation of the ubiquitin machinery for therapeutic benefit is therefore likely to disrupt the function of multiple viral proteins at stages throughout the course of infection.
甲型流感病毒聚合酶在病毒生命周期中起着至关重要的作用,指导病毒mRNA和基因组的合成。它是一种三聚体复合物,由PA、PB1和PB2亚基组成,并与病毒RNA和核蛋白(NP)结合形成更高阶的核糖核蛋白(RNP)复合物。在感染过程中,聚合酶会受到时间上的调控,以确保病毒基因的协调表达以及病毒基因组的复制。多种宿主因子和过程参与了甲型流感病毒聚合酶功能的调控,包括翻译后修饰;然而,其机制尚未完全明确。在此,我们证明泛素化在刺激聚合酶活性方面发挥着重要作用。我们发现RNP中的所有蛋白质亚基都会发生泛素化,但泛素化并不会显著改变蛋白质水平。相反,泛素化和活跃的蛋白酶体增强了聚合酶活性。泛素的表达以剂量依赖的方式上调聚合酶功能,导致感染期间病毒RNA(vRNA)、cRNA和mRNA的积累增加以及病毒基因表达增强。泛素表达直接影响聚合酶活性,而不依赖于核蛋白(NP)或核糖核蛋白(RNP)的组装。泛素化和泛素-蛋白酶体途径在流感病毒感染的多个阶段发挥关键作用,此处呈现的数据表明这些过程调节病毒聚合酶活性,而与蛋白质降解无关。细胞泛素-蛋白酶体途径影响整个流感病毒生命周期中的各个步骤。泛素化通过靶向病毒蛋白进行降解并刺激先天性抗病毒信号通路来抑制复制。泛素化还通过促进病毒进入和病毒粒子解体来增强复制。我们在此确定了泛素-蛋白酶体系统的另一个促进病毒的作用,表明病毒复制机制中的所有蛋白质都可发生泛素化,这对于最佳病毒聚合酶活性至关重要。因此,为了获得治疗益处而对泛素机制进行操控可能会在感染过程的各个阶段破坏多种病毒蛋白的功能。