Suppr超能文献

利用原子力显微镜、冲击压痕和流变学表征脑组织的多尺度力学性能

Characterizing Multiscale Mechanical Properties of Brain Tissue Using Atomic Force Microscopy, Impact Indentation, and Rheometry.

作者信息

Canovic Elizabeth Peruski, Qing Bo, Mijailovic Aleksandar S, Jagielska Anna, Whitfield Matthew J, Kelly Elyza, Turner Daria, Sahin Mustafa, Van Vliet Krystyn J

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology.

Department of Biological Engineering, Massachusetts Institute of Technology.

出版信息

J Vis Exp. 2016 Sep 6(115):54201. doi: 10.3791/54201.

Abstract

To design and engineer materials inspired by the properties of the brain, whether for mechanical simulants or for tissue regeneration studies, the brain tissue itself must be well characterized at various length and time scales. Like many biological tissues, brain tissue exhibits a complex, hierarchical structure. However, in contrast to most other tissues, brain is of very low mechanical stiffness, with Young's elastic moduli E on the order of 100s of Pa. This low stiffness can present challenges to experimental characterization of key mechanical properties. Here, we demonstrate several mechanical characterization techniques that have been adapted to measure the elastic and viscoelastic properties of hydrated, compliant biological materials such as brain tissue, at different length scales and loading rates. At the microscale, we conduct creep-compliance and force relaxation experiments using atomic force microscope-enabled indentation. At the mesoscale, we perform impact indentation experiments using a pendulum-based instrumented indenter. At the macroscale, we conduct parallel plate rheometry to quantify the frequency dependent shear elastic moduli. We also discuss the challenges and limitations associated with each method. Together these techniques enable an in-depth mechanical characterization of brain tissue that can be used to better understand the structure of brain and to engineer bio-inspired materials.

摘要

为了设计和制造受大脑特性启发的材料,无论是用于机械模拟物还是组织再生研究,都必须在各种长度和时间尺度上对脑组织本身进行充分表征。与许多生物组织一样,脑组织呈现出复杂的层次结构。然而,与大多数其他组织不同的是,大脑的机械刚度非常低,杨氏弹性模量E约为数百帕斯卡。这种低刚度可能会给关键力学性能的实验表征带来挑战。在这里,我们展示了几种力学表征技术,这些技术已被应用于测量不同长度尺度和加载速率下的水合、柔顺生物材料(如脑组织)的弹性和粘弹性特性。在微观尺度上,我们使用原子力显微镜压痕进行蠕变柔量和力松弛实验。在中观尺度上,我们使用基于摆锤的仪器化压头进行冲击压痕实验。在宏观尺度上,我们进行平行板流变测量以量化频率依赖的剪切弹性模量。我们还讨论了与每种方法相关的挑战和局限性。这些技术共同实现了对脑组织的深入力学表征,可用于更好地理解大脑结构并设计受生物启发的材料。

相似文献

2
Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation.
Acta Biomater. 2018 Apr 15;71:388-397. doi: 10.1016/j.actbio.2018.02.017. Epub 2018 Mar 1.
4
Measured pulmonary arterial tissue stiffness is highly sensitive to AFM indenter dimensions.
J Mech Behav Biomed Mater. 2017 Oct;74:118-127. doi: 10.1016/j.jmbbm.2017.05.039. Epub 2017 May 31.
5
Mechanical properties study of SW480 cells based on AFM.
Cell Biol Int. 2015 Aug;39(8):972-7. doi: 10.1002/cbin.10482. Epub 2015 May 29.
6
Probing Mechanical Properties of Brain in a Tuberous Sclerosis Model of Autism.
J Biomech Eng. 2019 Mar 1;141(3). doi: 10.1115/1.4040945.
7
Atomic force microscopy studies on cellular elastic and viscoelastic properties.
Sci China Life Sci. 2018 Jan;61(1):57-67. doi: 10.1007/s11427-016-9041-9. Epub 2017 Jun 29.
8
Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation.
J Mater Sci Mater Med. 2016 Nov;27(11):163. doi: 10.1007/s10856-016-5775-5. Epub 2016 Sep 19.
9
Mechanical Characterization by Mesoscale Indentation: Advantages and Pitfalls for Tissue and Scaffolds.
Tissue Eng Part C Methods. 2019 Oct;25(10):619-629. doi: 10.1089/ten.TEC.2018.0372. Epub 2019 May 15.
10
Probing mechanical properties of fully hydrated gels and biological tissues.
J Biomech. 2008 Nov 14;41(15):3285-9. doi: 10.1016/j.jbiomech.2008.08.015. Epub 2008 Oct 14.

引用本文的文献

1
Epithelial Cell Mechanoresponse to Matrix Viscoelasticity and Confinement Within Micropatterned Viscoelastic Hydrogels.
Adv Sci (Weinh). 2025 May;12(18):e2408635. doi: 10.1002/advs.202408635. Epub 2025 Feb 14.
2
Multi-scale measurement of stiffness in the developing ferret brain.
Sci Rep. 2023 Nov 23;13(1):20583. doi: 10.1038/s41598-023-47900-4.
3
Assessing cell migration in hydrogels: An overview of relevant materials and methods.
Mater Today Bio. 2022 Dec 29;18:100537. doi: 10.1016/j.mtbio.2022.100537. eCollection 2023 Feb.
4
Recent advancements and future requirements in vascularization of cortical organoids.
Front Bioeng Biotechnol. 2022 Nov 3;10:1048731. doi: 10.3389/fbioe.2022.1048731. eCollection 2022.
6
Viscoelastic Biomaterials for Tissue Regeneration.
Tissue Eng Part C Methods. 2022 Jul;28(7):289-300. doi: 10.1089/ten.TEC.2022.0040.
7
Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus.
Nat Neurosci. 2022 Apr;25(4):458-473. doi: 10.1038/s41593-022-01043-3. Epub 2022 Apr 4.
8
Gelator length precisely tunes supramolecular hydrogel stiffness and neuronal phenotype in 3D culture.
ACS Biomater Sci Eng. 2020 Feb 10;6(2):1196-1207. doi: 10.1021/acsbiomaterials.9b01585. Epub 2020 Jan 17.
9
Mechanical regulation of oligodendrocyte biology.
Neurosci Lett. 2020 Jan 19;717:134673. doi: 10.1016/j.neulet.2019.134673. Epub 2019 Dec 12.
10
Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering.
J Biomed Mater Res A. 2019 Apr;107(4):704-718. doi: 10.1002/jbm.a.36603. Epub 2019 Jan 21.

本文引用的文献

1
Compression stiffening of brain and its effect on mechanosensing by glioma cells.
New J Phys. 2014 Jul;16:075002. doi: 10.1088/1367-2630/16/7/075002.
4
Viscoelastic properties of the P17 and adult rat brain from indentation in the coronal plane.
J Biomech Eng. 2013 Nov;135(11):114507. doi: 10.1115/1.4025386.
6
Tunable mechanical behavior of synthetic organogels as biofidelic tissue simulants.
J Biomech. 2013 May 31;46(9):1583-91. doi: 10.1016/j.jbiomech.2013.03.011. Epub 2013 Apr 23.
9
Age-dependent regional mechanical properties of the rat hippocampus and cortex.
J Biomech Eng. 2010 Jan;132(1):011010. doi: 10.1115/1.4000164.
10
Mechanical properties of brain tissue by indentation: interregional variation.
J Mech Behav Biomed Mater. 2010 Feb;3(2):158-66. doi: 10.1016/j.jmbbm.2009.09.001. Epub 2009 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验