Thompson Kyle, Majd Homa, Dallabona Cristina, Reinson Karit, King Martin S, Alston Charlotte L, He Langping, Lodi Tiziana, Jones Simon A, Fattal-Valevski Aviva, Fraenkel Nitay D, Saada Ann, Haham Alon, Isohanni Pirjo, Vara Roshni, Barbosa Inês A, Simpson Michael A, Deshpande Charu, Puusepp Sanna, Bonnen Penelope E, Rodenburg Richard J, Suomalainen Anu, Õunap Katrin, Elpeleg Orly, Ferrero Ileana, McFarland Robert, Kunji Edmund R S, Taylor Robert W
Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
Am J Hum Genet. 2016 Oct 6;99(4):860-876. doi: 10.1016/j.ajhg.2016.08.014. Epub 2016 Sep 29.
Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.
编码线粒体ADP/ATP载体AAC1的SLC25A4基因突变是公认的线粒体疾病病因。几个杂合的SLC25A4基因突变会导致成人发病的常染色体显性进行性外眼肌麻痹,并伴有多个线粒体DNA缺失,而隐性SLC25A4基因突变则会导致儿童期发病的线粒体肌病和心肌病。在此,我们描述了通过全外显子组测序鉴定出7名携带显性、新发SLC25A4基因突变的先证者。所有受影响个体均在出生时发病,依赖呼吸机,经检测显示严重的线粒体呼吸链联合缺陷,并伴有骨骼肌线粒体DNA拷贝数显著减少。引人注目的是,7名受试者中有4名存在相同的c.239G>A(p.Arg80His)突变,另外3名受试者携带相同的c.703C>G(p.Arg235Gly)突变。骨骼肌分析显示AAC1蛋白水平显著降低,且含有线粒体DNA编码亚基的呼吸链复合体缺失。我们发现两种重组AAC1突变蛋白在ADP/ATP转运方面均严重受损,分别最有可能影响载体的底物结合和机制。这种极低的转运能力可能影响线粒体DNA的维持,进而影响呼吸作用,导致严重的能量危机。这些新发SLC25A4基因突变致病性的确认突出了与该基因突变相关的第三种独特临床表型,并表明早发性线粒体疾病可由反复出现的新发突变引起,这对线粒体疾病全外显子组测序数据的应用和分析具有重要意义。