Suppr超能文献

经颅直流电刺激期间的近红外光谱-脑电图联合成像:基于自回归模型的在线参数估计

NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model.

作者信息

Sood Mehak, Besson Pierre, Muthalib Makii, Jindal Utkarsh, Perrey Stephane, Dutta Anirban, Hayashibe Mitsuhiro

机构信息

Electronics and Communication Engineering, International Institute of Information Technology, Hyderabad, India.

EUROMOV, Université de Montpellier, Montpellier, France.

出版信息

J Neurosci Methods. 2016 Dec 1;274:71-80. doi: 10.1016/j.jneumeth.2016.09.008. Epub 2016 Sep 28.

Abstract

BACKGROUND

Transcranial direct current stimulation (tDCS) has been shown to perturb both cortical neural activity and hemodynamics during (online) and after the stimulation, however mechanisms of these tDCS-induced online and after-effects are not known. Here, online resting-state spontaneous brain activation may be relevant to monitor tDCS neuromodulatory effects that can be measured using electroencephalography (EEG) in conjunction with near-infrared spectroscopy (NIRS).

METHOD

We present a Kalman Filter based online parameter estimation of an autoregressive (ARX) model to track the transient coupling relation between the changes in EEG power spectrum and NIRS signals during anodal tDCS (2mA, 10min) using a 4×1 ring high-definition montage.

RESULTS

Our online ARX parameter estimation technique using the cross-correlation between log (base-10) transformed EEG band-power (0.5-11.25Hz) and NIRS oxy-hemoglobin signal in the low frequency (≤0.1Hz) range was shown in 5 healthy subjects to be sensitive to detect transient EEG-NIRS coupling changes in resting-state spontaneous brain activation during anodal tDCS. Conventional sliding window cross-correlation calculations suffer a fundamental problem in computing the phase relationship as the signal in the window is considered time-invariant and the choice of the window length and step size are subjective. Here, Kalman Filter based method allowed online ARX parameter estimation using time-varying signals that could capture transients in the coupling relationship between EEG and NIRS signals.

CONCLUSION

Our new online ARX model based tracking method allows continuous assessment of the transient coupling between the electrophysiological (EEG) and the hemodynamic (NIRS) signals representing resting-state spontaneous brain activation during anodal tDCS.

摘要

背景

经颅直流电刺激(tDCS)已被证明在刺激期间(在线)和刺激后都会干扰皮层神经活动和血流动力学,然而这些tDCS诱导的在线和后续效应的机制尚不清楚。在此,在线静息态自发脑激活可能与监测tDCS神经调节效应相关,该效应可通过脑电图(EEG)结合近红外光谱(NIRS)进行测量。

方法

我们提出一种基于卡尔曼滤波器的自回归(ARX)模型在线参数估计方法,以使用4×1环形高清电极阵列追踪阳极tDCS(2mA,10分钟)期间脑电图功率谱变化与NIRS信号之间的瞬态耦合关系。

结果

我们利用5名健康受试者,展示了在低频(≤0.1Hz)范围内,基于对数(以10为底)变换的脑电图频段功率(0.5 - 11.25Hz)与NIRS氧合血红蛋白信号之间的互相关的在线ARX参数估计技术,对检测阳极tDCS期间静息态自发脑激活中的瞬态脑电图 - NIRS耦合变化敏感。传统的滑动窗口互相关计算在计算相位关系时存在一个基本问题,因为窗口中的信号被视为时不变的,并且窗口长度和步长的选择是主观的。在此,基于卡尔曼滤波器的方法允许使用时变信号进行在线ARX参数估计,该信号可以捕获脑电图和NIRS信号之间耦合关系中的瞬态变化。

结论

我们基于新的在线ARX模型的追踪方法允许连续评估代表阳极tDCS期间静息态自发脑激活的电生理(EEG)和血流动力学(NIRS)信号之间的瞬态耦合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验