Talukdar M Tanveer, Frost H Robert, Diamond Solomon G
Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, USA.
Institute for Quantitative Biomedical Sciences, One Medical Center Drive, Lebanon, NH 03756, USA.
Comput Math Methods Med. 2015;2015:830849. doi: 10.1155/2015/830849. Epub 2015 May 19.
Despite significant improvements in neuroimaging technologies and analysis methods, the fundamental relationship between local changes in cerebral hemodynamics and the underlying neural activity remains largely unknown. In this study, a data driven approach is proposed for modeling this neurovascular coupling relationship from simultaneously acquired electroencephalographic (EEG) and near-infrared spectroscopic (NIRS) data. The approach uses gamma transfer functions to map EEG spectral envelopes that reflect time-varying power variations in neural rhythms to hemodynamics measured with NIRS during median nerve stimulation. The approach is evaluated first with simulated EEG-NIRS data and then by applying the method to experimental EEG-NIRS data measured from 3 human subjects. Results from the experimental data indicate that the neurovascular coupling relationship can be modeled using multiple sets of gamma transfer functions. By applying cluster analysis, statistically significant parameter sets were found to predict NIRS hemodynamics from EEG spectral envelopes. All subjects were found to have significant clustered parameters (P < 0.05) for EEG-NIRS data fitted using gamma transfer functions. These results suggest that the use of gamma transfer functions followed by cluster analysis of the resulting parameter sets may provide insights into neurovascular coupling in human neuroimaging data.
尽管神经成像技术和分析方法有了显著改进,但大脑血流动力学的局部变化与潜在神经活动之间的基本关系在很大程度上仍不为人知。在本研究中,提出了一种数据驱动方法,用于根据同时采集的脑电图(EEG)和近红外光谱(NIRS)数据对这种神经血管耦合关系进行建模。该方法使用伽马传递函数,将反映神经节律中随时间变化的功率变化的EEG频谱包络映射到正中神经刺激期间用NIRS测量的血流动力学上。该方法首先用模拟的EEG-NIRS数据进行评估,然后将该方法应用于从3名人类受试者测量的实验性EEG-NIRS数据。实验数据的结果表明,可以使用多组伽马传递函数对神经血管耦合关系进行建模。通过应用聚类分析,发现了具有统计学意义的参数集,可根据EEG频谱包络预测NIRS血流动力学。发现所有受试者对于使用伽马传递函数拟合的EEG-NIRS数据都有显著的聚类参数(P < 0.05)。这些结果表明,使用伽马传递函数并对所得参数集进行聚类分析,可能有助于深入了解人类神经成像数据中的神经血管耦合。