Suppr超能文献

Regulatory and essential light-chain-binding sites in myosin heavy chain subfragment-1 mapped by site-directed mutagenesis.

作者信息

Mitchell E J, Karn J, Brown D M, Newman A, Jakes R, Kendrick-Jones J

机构信息

MRC Laboratory of Molecular Biology, Cambridge, England.

出版信息

J Mol Biol. 1989 Jul 5;208(1):199-205. doi: 10.1016/0022-2836(89)90096-x.

Abstract

Site-directed mutagenesis of the cloned subfragment-1 (S-1) region of the unc-54 gene, encoding the myosin heavy chain B (MHC B) from Caenorhabditis elegans, has been used to locate binding sites for the regulatory and essential light chains. MHC B S-1 synthesized in Escherichia coli co-migrated with rabbit skeletal muscle myosin S-1 (Mr 90,000), was recognized by anti-nematode myosin antiserum on immunoblots, and specifically bound to 125I-labelled regulatory and essential light chains in a gel overlay assay. Deletion of 102 residues from the C terminus (mutant 655) reduced regulatory and essential light-chain binding to about 30% and 20% of wild-type levels, respectively. Similar reductions in relative binding of the two light chains were seen with mutant 534, in which 38 residues were deleted from the C terminus. Potential binding sites within 75 residues of the C terminus of S-1 were mapped by construction of five other mutant S-1 clones (398, 399, 400, 409 and 411) containing internal deletions of ten to 12 amino acid residues. These showed up to 30% reductions in their ability to bind essential light chains, but did not differ significantly from wild-type in their ability to bind regulatory light chains. Another mutant, 415, containing a deletion of a conserved acidic hexapeptide, E-D-I-R-D-E, showed enhancement of binding of regulatory and essential light chains to 150% and 165% of wild-type levels. Hence, the major binding sites for both light chains are within 38 amino acid residues of the C terminus.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验