Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 117602, Singapore.
Nat Commun. 2016 Oct 4;7:13059. doi: 10.1038/ncomms13059.
Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce and Mn-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.
在广泛的领域中满足对镧系掺杂发光纳米晶体的高需求,取决于开发一种稳健的合成方案,该方案能够提供快速、即时的纳米晶体制备。然而,迄今为止,几乎所有镧系掺杂发光纳米材料都依赖于直接合成,需要在高温下对晶体成核和生长进行严格控制。在这里,我们展示了使用阳离子交换策略来快速获得此类纳米晶体的大类别。通过将阳离子交换过程与能量迁移相结合,可以在保持初始纳米晶体模板的尺寸、形态和晶体相的同时,轻松调整纳米晶体的发光性能。这种后合成策略使我们能够在 Ce 和 Mn 激活的六方相纳米晶体中实现上转换发光,为从化学传感到防伪等应用开辟了道路。