Suppr超能文献

用于脑内出血定量的自动分割算法的开发与验证

Development and Validation of an Automatic Segmentation Algorithm for Quantification of Intracerebral Hemorrhage.

作者信息

Scherer Moritz, Cordes Jonas, Younsi Alexander, Sahin Yasemin-Aylin, Götz Michael, Möhlenbruch Markus, Stock Christian, Bösel Julian, Unterberg Andreas, Maier-Hein Klaus, Orakcioglu Berk

机构信息

From the Department of Neurosurgery (M.S., A.Y., Y.-A.S., A.U., B.O.), Institute of Medical Biometry and Informatics (IMBI) (C.S.), and Department of Neurology (J.B.), University Hospital Heidelberg, Germany; Junior Group Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany (J.C., M.G., K.M.-H.); and Division of Neuroradiology, Heidelberg University Hospital, Germany (M.M.).

出版信息

Stroke. 2016 Nov;47(11):2776-2782. doi: 10.1161/STROKEAHA.116.013779. Epub 2016 Oct 4.

Abstract

BACKGROUND AND PURPOSE

ABC/2 is still widely accepted for volume estimations in spontaneous intracerebral hemorrhage (ICH) despite known limitations, which potentially accounts for controversial outcome-study results. The aim of this study was to establish and validate an automatic segmentation algorithm, allowing for quick and accurate quantification of ICH.

METHODS

A segmentation algorithm implementing first- and second-order statistics, texture, and threshold features was trained on manual segmentations with a random-forest methodology. Quantitative data of the algorithm, manual segmentations, and ABC/2 were evaluated for agreement in a study sample (n=28) and validated in an independent sample not used for algorithm training (n=30).

RESULTS

ABC/2 volumes were significantly larger compared with either manual or algorithm values, whereas no significant differences were found between the latter (P<0.0001; Friedman+Dunn's multiple comparison). Algorithm agreement with the manual reference was strong (concordance correlation coefficient 0.95 [lower 95% confidence interval 0.91]) and superior to ABC/2 (concordance correlation coefficient 0.77 [95% confidence interval 0.64]). Validation confirmed agreement in an independent sample (algorithm concordance correlation coefficient 0.99 [95% confidence interval 0.98], ABC/2 concordance correlation coefficient 0.82 [95% confidence interval 0.72]). The algorithm was closer to respective manual segmentations than ABC/2 in 52/58 cases (89.7%).

CONCLUSIONS

An automatic segmentation algorithm for volumetric analysis of spontaneous ICH was developed and validated in this study. Algorithm measurements showed strong agreement with manual segmentations, whereas ABC/2 exhibited its limitations, yielding inaccurate overestimations of ICH volume. The refined, yet time-efficient, quantification of ICH by the algorithm may facilitate evaluation of clot volume as an outcome predictor and trigger for surgical interventions in the clinical setting.

摘要

背景与目的

尽管存在已知局限性,但ABC/2法仍被广泛用于自发性脑出血(ICH)的体积估计,这可能是导致结果研究存在争议的原因。本研究旨在建立并验证一种自动分割算法,以实现对ICH的快速、准确量化。

方法

采用随机森林方法,基于手动分割对一种实现一阶和二阶统计、纹理及阈值特征的分割算法进行训练。在一个研究样本(n = 28)中评估该算法、手动分割及ABC/2法的定量数据的一致性,并在一个未用于算法训练的独立样本(n = 30)中进行验证。

结果

与手动或算法测量值相比,ABC/2法测得的体积显著更大,而后两者之间未发现显著差异(P < 0.0001;Friedman + Dunn多重比较)。算法与手动参考的一致性很强(一致性相关系数0.95 [95%置信区间下限0.91]),优于ABC/2法(一致性相关系数0.77 [95%置信区间0.64])。验证在独立样本中确认了一致性(算法一致性相关系数0.99 [95%置信区间0.98],ABC/2法一致性相关系数0.82 [95%置信区间0.72])。在52/58例(89.7%)病例中,该算法比ABC/2法更接近各自的手动分割。

结论

本研究开发并验证了一种用于自发性ICH体积分析的自动分割算法。算法测量结果与手动分割显示出很强的一致性,而ABC/2法显示出其局限性,对ICH体积产生不准确的高估。该算法对ICH进行的精确且高效的量化,可能有助于在临床环境中评估血凝块体积作为结果预测指标及手术干预触发因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验