Suppr超能文献

基于卷积自动编码器的深度学习用于利用脑部CT图像进行脑出血分类

Convolutional autoencoder-based deep learning for intracerebral hemorrhage classification using brain CT images.

作者信息

Nageswara Rao B, Acharya U Rajendra, Tan Ru-San, Dash Pratyusa, Mohapatra Manoranjan, Sabut Sukanta

机构信息

Sensing and Computing Lab, School of Electronics Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, India.

School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield Central, QLD Australia.

出版信息

Cogn Neurodyn. 2025 Dec;19(1):77. doi: 10.1007/s11571-025-10259-5. Epub 2025 May 19.

Abstract

Intracerebral haemorrhage (ICH) is a common form of stroke that affects millions of people worldwide. The incidence is associated with a high rate of mortality and morbidity. Accurate diagnosis using brain non-contrast computed tomography (NCCT) is crucial for decision-making on potentially life-saving surgery. Limited access to expert readers and inter-observer variability imposes barriers to timeous and accurate ICH diagnosis. We proposed a hybrid deep learning model for automated ICH diagnosis using NCCT images, which comprises a convolutional autoencoder (CAE) to extract features with reduced data dimensionality and a dense neural network (DNN) for classification. In order to ensure that the model generalizes to new data, we trained it using tenfold cross-validation and holdout methods. Principal component analysis (PCA) based dimensionality reduction and classification is systematically implemented for comparison. The study dataset comprises 1645 ("ICH" class) and 1648 ("Normal" class belongs to patients with non-hemorrhagic stroke) labelled images obtained from 108 patients, who had undergone CT examination on a 64-slice computed tomography scanner at Kalinga Institute of Medical Sciences between 2020 and 2023. Our developed CAE-DNN hybrid model attained 99.84% accuracy, 99.69% sensitivity, 100% specificity, 100% precision, and 99.84% F1-score, which outperformed the comparator PCA-DNN model as well as the published results in the literature. In addition, using saliency maps, our CAE-DNN model can highlight areas on the images that are closely correlated with regions of ICH, which have been manually contoured by expert readers. The CAE-DNN model demonstrates the proof-of-concept for accurate ICH detection and localization, which can potentially be implemented to prioritize the treatment using NCCT images in clinical settings.

摘要

脑出血(ICH)是一种常见的中风形式,影响着全球数百万人。其发病率与高死亡率和高发病率相关。使用脑部非增强计算机断层扫描(NCCT)进行准确诊断对于决定是否进行可能挽救生命的手术至关重要。获得专家阅片者的机会有限以及观察者间的差异给及时准确的ICH诊断带来了障碍。我们提出了一种用于使用NCCT图像进行自动ICH诊断的混合深度学习模型,该模型包括一个卷积自动编码器(CAE)以提取数据维度降低的特征以及一个用于分类的密集神经网络(DNN)。为了确保模型能够推广到新数据,我们使用十折交叉验证和留出法对其进行训练。系统地实施基于主成分分析(PCA)的降维和分类以进行比较。研究数据集包括从108名患者获得的1645张(“ICH”类别)和1648张(“正常”类别,属于非出血性中风患者)标记图像,这些患者于2020年至2023年在卡林加医学科学研究所的64层计算机断层扫描仪上接受了CT检查。我们开发的CAE-DNN混合模型达到了99.84%的准确率、99.69%的灵敏度、100%的特异性、100%的精确率和99.84%的F1分数,优于比较器PCA-DNN模型以及文献中发表的结果。此外,使用显著性图,我们的CAE-DNN模型可以突出显示图像上与ICH区域密切相关的区域,这些区域已由专家阅片者手动勾勒。CAE-DNN模型证明了准确检测和定位ICH的概念验证,这有可能在临床环境中用于根据NCCT图像对治疗进行优先排序。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验