Suppr超能文献

COMPASS:一种用于预测阿尔茨海默病初始评估后 24 个月 MMSE 评分变化的计算模型。

COMPASS: A computational model to predict changes in MMSE scores 24-months after initial assessment of Alzheimer's disease.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, USA.

Department of Neurology and Michigan Alzheimer's Disease Center, University of Michigan, USA.

出版信息

Sci Rep. 2016 Oct 5;6:34567. doi: 10.1038/srep34567.

Abstract

We present COMPASS, a COmputational Model to Predict the development of Alzheimer's diSease Spectrum, to model Alzheimer's disease (AD) progression. This was the best-performing method in recent crowdsourcing benchmark study, DREAM Alzheimer's Disease Big Data challenge to predict changes in Mini-Mental State Examination (MMSE) scores over 24-months using standardized data. In the present study, we conducted three additional analyses beyond the DREAM challenge question to improve the clinical contribution of our approach, including: (1) adding pre-validated baseline cognitive composite scores of ADNI-MEM and ADNI-EF, (2) identifying subjects with significant declines in MMSE scores, and (3) incorporating SNPs of top 10 genes connected to APOE identified from functional-relationship network. For (1) above, we significantly improved predictive accuracy, especially for the Mild Cognitive Impairment (MCI) group. For (2), we achieved an area under ROC of 0.814 in predicting significant MMSE decline: our model has 100% precision at 5% recall, and 91% accuracy at 10% recall. For (3), "genetic only" model has Pearson's correlation of 0.15 to predict progression in the MCI group. Even though addition of this limited genetic model to COMPASS did not improve prediction of progression of MCI group, the predictive ability of SNP information extended beyond well-known APOE allele.

摘要

我们提出了 COMPASS,这是一种用于预测阿尔茨海默病谱发展的计算模型,以模拟阿尔茨海默病(AD)的进展。这是最近在众包基准研究——DREAM 阿尔茨海默病大数据挑战中表现最好的方法,该研究旨在使用标准化数据预测 24 个月内 Mini-Mental State Examination(MMSE)评分的变化。在本研究中,我们进行了三次额外的分析,以提高我们方法的临床贡献,包括:(1)添加 ADNI-MEM 和 ADNI-EF 的预验证基线认知综合评分,(2)识别 MMSE 评分显著下降的受试者,以及(3)纳入从功能关系网络中确定的与 APOE 相关的前 10 个基因的 SNPs。对于(1),我们显著提高了预测准确性,尤其是对于轻度认知障碍(MCI)组。对于(2),我们在预测 MMSE 显著下降方面实现了 ROC 曲线下面积为 0.814:我们的模型在 5%召回率时具有 100%的精度,在 10%召回率时具有 91%的准确率。对于(3),“仅遗传”模型与预测 MCI 组进展的 Pearson 相关系数为 0.15。尽管将这种有限的遗传模型添加到 COMPASS 中并没有改善 MCI 组的进展预测,但 SNP 信息的预测能力超出了已知的 APOE 等位基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7f2/5050516/b5ee8239cd43/srep34567-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验