Suppr超能文献

一种用于模拟溶质沿肾单位转运及氧气消耗的计算模型。

A computational model for simulating solute transport and oxygen consumption along the nephrons.

作者信息

Layton Anita T, Vallon Volker, Edwards Aurélie

机构信息

Department of Mathematics, Duke University, Durham, North Carolina;

Departments of Medicine and Pharmacology, University of California San Diego, La Jolla, California, and San Diego Veterans Affairs Healthcare System, San Diego, California.

出版信息

Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1378-F1390. doi: 10.1152/ajprenal.00293.2016. Epub 2016 Oct 5.

Abstract

The goal of this study was to investigate water and solute transport, with a focus on sodium transport (T) and metabolism along individual nephron segments under differing physiological and pathophysiological conditions. To accomplish this goal, we developed a computational model of solute transport and oxygen consumption (Q ) along different nephron populations of a rat kidney. The model represents detailed epithelial and paracellular transport processes along both the superficial and juxtamedullary nephrons, with the loop of Henle of each model nephron extending to differing depths of the inner medulla. We used the model to assess how changes in T may alter Q in different nephron segments and how shifting the T sites alters overall kidney Q Under baseline conditions, the model predicted a whole kidney T/Q , which denotes the number of moles of Na reabsorbed per moles of O consumed, of ∼15, with T efficiency predicted to be significantly greater in cortical nephron segments than in medullary segments. The T/Q ratio was generally similar among the superficial and juxtamedullary nephron segments, except for the proximal tubule, where T/Q was ∼20% higher in superficial nephrons, due to the larger luminal flow along the juxtamedullary proximal tubules and the resulting higher, flow-induced transcellular transport. Moreover, the model predicted that an increase in single-nephron glomerular filtration rate does not significantly affect T/Q in the proximal tubules but generally increases T/Q along downstream segments. The latter result can be attributed to the generally higher luminal [Na], which raises paracellular T Consequently, vulnerable medullary segments, such as the S3 segment and medullary thick ascending limb, may be relatively protected from flow-induced increases in Q under pathophysiological conditions.

摘要

本研究的目的是调查水和溶质转运,重点关注不同生理和病理生理条件下单个肾单位各节段的钠转运(T)和代谢。为实现这一目标,我们建立了一个大鼠肾脏不同肾单位群体溶质转运和氧消耗(Q)的计算模型。该模型代表了浅表肾单位和近髓肾单位上皮细胞及细胞旁的详细转运过程,每个模型肾单位的亨氏袢延伸至髓质内层的不同深度。我们使用该模型评估T的变化如何改变不同肾单位节段的Q,以及T位点的转移如何改变整个肾脏的Q。在基线条件下,该模型预测全肾的T/Q(表示每消耗1摩尔O所重吸收的Na摩尔数)约为15,预计皮质肾单位节段的T效率显著高于髓质节段。浅表肾单位和近髓肾单位节段的T/Q比值总体相似,但近端小管除外,浅表肾单位的T/Q比近髓肾单位高约20%,这是由于近髓近端小管管腔内流量较大,导致流量诱导的跨细胞转运增加。此外,该模型预测单肾单位肾小球滤过率的增加不会显著影响近端小管的T/Q,但通常会增加下游节段的T/Q。后一结果可归因于管腔内较高的[Na],这会增加细胞旁转运。因此,在病理生理条件下,诸如S3节段和髓质厚升支等脆弱的髓质节段可能相对免受流量诱导的Q增加的影响。

相似文献

5
Sex differences in solute transport along the nephrons: effects of Na transport inhibition.沿肾单位溶质转运的性别差异:钠转运抑制的影响。
Am J Physiol Renal Physiol. 2020 Sep 1;319(3):F487-F505. doi: 10.1152/ajprenal.00240.2020. Epub 2020 Aug 3.
7
A computational model of epithelial solute and water transport along a human nephron.沿人体肾单位的上皮溶质和水转运的计算模型。
PLoS Comput Biol. 2019 Feb 25;15(2):e1006108. doi: 10.1371/journal.pcbi.1006108. eCollection 2019 Feb.

引用本文的文献

3
Focus on oliguria during renal replacement therapy.重点关注肾脏替代治疗期间的少尿症。
J Anesth. 2024 Oct;38(5):681-691. doi: 10.1007/s00540-024-03342-4. Epub 2024 May 22.
4
How the kidney regulates magnesium: a modelling study.肾脏如何调节镁:一项建模研究。
R Soc Open Sci. 2024 Mar 20;11(3):231484. doi: 10.1098/rsos.231484. eCollection 2024 Mar.
9
Sex differences in circadian regulation of kidney function of the mouse.昼夜节律对小鼠肾功能调节的性别差异。
Am J Physiol Renal Physiol. 2022 Dec 1;323(6):F675-F685. doi: 10.1152/ajprenal.00227.2022. Epub 2022 Oct 20.

本文引用的文献

4
A mathematical model of the rat nephron: glucose transport.大鼠肾单位的数学模型:葡萄糖转运
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1098-118. doi: 10.1152/ajprenal.00505.2014. Epub 2015 Feb 18.
5
A mathematical model of rat proximal tubule and loop of Henle.大鼠近端肾小管和髓袢的数学模型。
Am J Physiol Renal Physiol. 2015 May 15;308(10):F1076-97. doi: 10.1152/ajprenal.00504.2014. Epub 2015 Feb 18.
6
Basal renal O2 consumption and the efficiency of O2 utilization for Na+ reabsorption.基础肾耗氧量和 O2 用于钠重吸收的效率。
Am J Physiol Renal Physiol. 2014 Mar 1;306(5):F551-60. doi: 10.1152/ajprenal.00473.2013. Epub 2014 Jan 15.
10
Potassium excretion during antinatriuresis: perspective from a distal nephron model.抗利钠尿时的钾排泄:来自远端肾单位模型的观点。
Am J Physiol Renal Physiol. 2012 Mar 15;302(6):F658-73. doi: 10.1152/ajprenal.00528.2011. Epub 2011 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验