Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Fraunhofer IGB, Nobelstrasse 12, 70569 Stuttgart, Germany.
Sci Total Environ. 2017 Jan 1;575:1228-1238. doi: 10.1016/j.scitotenv.2016.09.201. Epub 2016 Oct 5.
The electrochemical degradation of the fluoroquinolone antibiotic norfloxacin (NOR) on Ti/IrO anodes, in several aqueous matrices was evaluated. For this purpose, initially the performance and degradation routes of the technology at several pH values (3.0, 6.5, 7.5 and 9.0) and in the presence of some of the most common anions in real water matrices (Cl, HCO, SO and NO) were determined. The results showed that the degradation of NOR can occur through both direct elimination at the electrode surface and mediated oxidation, via the electrogeneration of oxidative agents, such as active chlorine species and percarbonate ions, which come from chloride and bicarbonate oxidation, respectively. Conversely, nitrate ions showed to inhibit the efficiency of the system. Concerning the pH, the efficiency of the process in the presence of chloride ions followed the order: 9.0>7.5>6.5>3.0; showing a strong dependence of the NOR speciation, and being the anionic form of the antibiotic the more susceptible to be oxidized. Furthermore, the identification of three primary NOR by-products demonstrated that the initial attack of the active chlorine species, mainly HOCl, occurred at the secondary amine of the piperazine ring followed by chlorination of the benzene ring. The precedent findings were crucial to understand the efficiency of the technology to eliminate NOR in synthetic complex matrices such as seawater, municipal wastewater and urine. The electrochemical oxidation showed to be promissory to eliminate NOR, and its associated antimicrobial activity, in such complexes matrices. Waters at basic pH containing chloride or bicarbonate ions, such as seawater or municipal wastewater showed to be the most adapted to the application of the technology. Additionally, nitrate ions or urea, found in some matrices like fresh urine, reduce the efficiency of the process.
在几种水基质中,评估了 Ti/IrO 阳极上氟喹诺酮抗生素诺氟沙星(NOR)的电化学降解。为此,首先在几个 pH 值(3.0、6.5、7.5 和 9.0)和实际水基质中一些常见阴离子(Cl、HCO、SO 和 NO)存在的情况下,确定了该技术的性能和降解途径。结果表明,NOR 的降解可以通过电极表面的直接消除和通过电生成氧化剂(如活性氯物种和过碳酸盐离子)的介导氧化来进行,这些氧化剂分别来自氯化物和碳酸氢盐的氧化。相反,硝酸盐离子显示出抑制系统效率的作用。关于 pH 值,在存在氯离子的情况下,该过程的效率遵循以下顺序:9.0>7.5>6.5>3.0;表明 NOR 形态的强烈依赖性,并且抗生素的阴离子形式更容易被氧化。此外,三种主要 NOR 副产物的鉴定表明,活性氯物种(主要是 HOCl)的初始攻击发生在哌嗪环的仲胺上,随后是苯环的氯化。先前的发现对于理解该技术在海水、城市废水和尿液等合成复杂基质中消除 NOR 及其相关抗菌活性的效率至关重要。电化学氧化显示出在这种复杂基质中消除 NOR 及其相关抗菌活性的潜力。含有氯离子或碳酸氢根离子的碱性 pH 值水,如海水或城市废水,显示出最适合该技术的应用。此外,在一些基质中发现的硝酸盐离子或尿素,如新鲜尿液,会降低该过程的效率。