Suppr超能文献

芽殖酵母双链断裂修复过程中核小体占据率的重新建立。

Re-establishment of nucleosome occupancy during double-strand break repair in budding yeast.

作者信息

Tsabar Michael, Hicks Wade M, Tsaponina Olga, Haber James E

机构信息

Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States.

Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, United States.

出版信息

DNA Repair (Amst). 2016 Nov;47:21-29. doi: 10.1016/j.dnarep.2016.09.005. Epub 2016 Sep 28.

Abstract

Homologous recombination (HR) is an evolutionarily conserved pathway in eukaryotes that repairs a double-strand break (DSB) by copying homologous sequences from a sister chromatid, a homologous chromosome or an ectopic location. Recombination is challenged by the packaging of DNA into nucleosomes, which may impair the process at many steps, from resection of the DSB ends to the re-establishement of nucleosomes after repair. However, nucleosome dynamics during DSB repair have not been well described, primarily because of a lack of well-ordered nucleosomes around a DSB. We designed a system in budding yeast Saccharomyces cerevisiae to monitor nucleosome dynamics during repair of an HO endonuclease-induced DSB. Nucleosome occupancy around the break is lost following DSB formation, by 5'-3' resection of the DSB end. Soon after repair is complete, nucleosome occupancy is partially restored in a repair-dependent but cell cycle-independent manner. Full re-establishment of nucleosome protection back to the level prior to DSB induction is achieved when the cell cycle resumes following repair. These findings may have implications to the mechanisms by which cells sense the completion of repair.

摘要

同源重组(HR)是真核生物中一种进化上保守的途径,它通过从姐妹染色单体、同源染色体或异位位置复制同源序列来修复双链断裂(DSB)。DNA包装成核小体会对重组产生挑战,这可能会在从DSB末端切除到修复后核小体重新建立的许多步骤中损害该过程。然而,DSB修复过程中的核小体动态变化尚未得到很好的描述,主要是因为DSB周围缺乏有序排列的核小体。我们在芽殖酵母酿酒酵母中设计了一个系统,以监测HO内切酶诱导的DSB修复过程中的核小体动态变化。DSB形成后,通过DSB末端的5'-3'切除,断裂周围的核小体占有率丧失。修复完成后不久,核小体占有率以依赖于修复但不依赖于细胞周期的方式部分恢复。当修复后细胞周期恢复时,核小体保护完全恢复到DSB诱导前的水平。这些发现可能对细胞感知修复完成的机制有影响。

相似文献

1
Re-establishment of nucleosome occupancy during double-strand break repair in budding yeast.
DNA Repair (Amst). 2016 Nov;47:21-29. doi: 10.1016/j.dnarep.2016.09.005. Epub 2016 Sep 28.
2
The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends.
Nature. 2012 Sep 27;489(7417):576-80. doi: 10.1038/nature11355. Epub 2012 Sep 9.
4
The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation.
Mol Cell Biol. 2012 Nov;32(22):4727-40. doi: 10.1128/MCB.00566-12. Epub 2012 Sep 24.
5
DNA Damage-Induced Nucleosome Depletion Enhances Homology Search Independently of Local Break Movement.
Mol Cell. 2020 Oct 15;80(2):311-326.e4. doi: 10.1016/j.molcel.2020.09.002. Epub 2020 Sep 23.
6
Cohesin regulates homology search during recombinational DNA repair.
Nat Cell Biol. 2021 Nov;23(11):1176-1186. doi: 10.1038/s41556-021-00783-x. Epub 2021 Nov 8.
7
Nucleolin mediates nucleosome disruption critical for DNA double-strand break repair.
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16874-9. doi: 10.1073/pnas.1306160110. Epub 2013 Sep 30.
8
Ctf18 is required for homologous recombination-mediated double-strand break repair.
Nucleic Acids Res. 2007;35(15):4989-5000. doi: 10.1093/nar/gkm523. Epub 2007 Jul 18.
10
Systematic analysis of linker histone PTM hotspots reveals phosphorylation sites that modulate homologous recombination and DSB repair.
DNA Repair (Amst). 2020 Feb;86:102763. doi: 10.1016/j.dnarep.2019.102763. Epub 2019 Nov 29.

引用本文的文献

1
DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling.
Front Genet. 2022 Jan 12;12:821543. doi: 10.3389/fgene.2021.821543. eCollection 2021.
2
Chaperoning histones at the DNA repair dance.
DNA Repair (Amst). 2021 Dec;108:103240. doi: 10.1016/j.dnarep.2021.103240. Epub 2021 Oct 13.
4
Functional and structural insights into the MRX/MRN complex, a key player in recognition and repair of DNA double-strand breaks.
Comput Struct Biotechnol J. 2020 May 16;18:1137-1152. doi: 10.1016/j.csbj.2020.05.013. eCollection 2020.
5
Processing of DNA Double-Strand Breaks by the MRX Complex in a Chromatin Context.
Front Mol Biosci. 2019 Jun 7;6:43. doi: 10.3389/fmolb.2019.00043. eCollection 2019.
6
Quantitative mechanisms of DNA damage sensing and signaling.
Curr Genet. 2020 Feb;66(1):59-62. doi: 10.1007/s00294-019-01007-4. Epub 2019 Jun 21.
7
Choreography of parental histones in damaged chromatin.
Nucleus. 2017 May 4;8(3):255-260. doi: 10.1080/19491034.2017.1292192. Epub 2017 Feb 23.

本文引用的文献

2
Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair.
Genes Dev. 2016 May 15;30(10):1211-24. doi: 10.1101/gad.280685.116.
3
Mating-type Gene Switching in Saccharomyces cerevisiae.
Microbiol Spectr. 2015 Apr;3(2):MDNA3-0013-2014. doi: 10.1128/microbiolspec.MDNA3-0013-2014.
4
Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2.
Nucleic Acids Res. 2015 Aug 18;43(14):6889-901. doi: 10.1093/nar/gkv520. Epub 2015 May 27.
5
Two distinct modes for propagation of histone PTMs across the cell cycle.
Genes Dev. 2015 Mar 15;29(6):585-90. doi: 10.1101/gad.256354.114.
6
Histone chaperones: assisting histone traffic and nucleosome dynamics.
Annu Rev Biochem. 2014;83:487-517. doi: 10.1146/annurev-biochem-060713-035536.
7
Break-induced replication occurs by conservative DNA synthesis.
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13475-80. doi: 10.1073/pnas.1309800110. Epub 2013 Jul 29.
8
Chromatin and DNA replication.
Cold Spring Harb Perspect Biol. 2013 Aug 1;5(8):a010207. doi: 10.1101/cshperspect.a010207.
9
Chromatin modifications and chromatin remodeling during DNA repair in budding yeast.
Curr Opin Genet Dev. 2013 Apr;23(2):166-73. doi: 10.1016/j.gde.2012.11.015. Epub 2013 Apr 17.
10
Chromatin dynamics at the replication fork: there's more to life than histones.
Curr Opin Genet Dev. 2013 Apr;23(2):140-6. doi: 10.1016/j.gde.2012.12.007. Epub 2013 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验