Suppr超能文献

具有可控热膨胀的结构高效三维超材料。

Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion.

机构信息

Mechanical Engineering Department, McGill University, 817 Sherbrooke Street West, Montreal, QC, H3A OC3, Canada.

出版信息

Sci Rep. 2016 Oct 10;6:34924. doi: 10.1038/srep34924.

Abstract

The coefficient of thermal expansion (CTE) of architected materials, as opposed to that of conventional solids, can be tuned to zero by intentionally altering the geometry of their structural layout. Existing material architectures, however, achieve CTE tunability only with a sacrifice in structural efficiency, i.e. a drop in both their stiffness to mass ratio and strength to mass ratio. In this work, we elucidate how to resolve the trade-off between CTE tunability and structural efficiency and present a lightweight bi-material architecture that not only is stiffer and stronger than other 3D architected materials, but also has a highly tunable CTE. Via a combination of physical experiments on 3D fabricated prototypes and numeric simulations, we demonstrate how two distinct mechanisms of thermal expansion appearing in a tetrahedron, can be exploited in an Octet lattice to generate a large range of CTE values, including negative, zero, or positive, with no loss in structural efficiency. The novelty and simplicity of the proposed design as well as the ease in fabrication, make this bi-material architecture well-suited for a wide range of applications, including satellite antennas, space optical systems, precision instruments, thermal actuators, and MEMS.

摘要

与传统固体相比,结构材料的热膨胀系数(CTE)可以通过有意改变其结构布局的几何形状来调整为零。然而,现有的材料结构只能在牺牲结构效率的情况下实现 CTE 的可调性,即它们的刚度与质量比和强度与质量比都会下降。在这项工作中,我们阐明了如何解决 CTE 可调性和结构效率之间的权衡问题,并提出了一种轻质双材料结构,它不仅比其他 3D 结构材料更硬、更强,而且具有高度可调的 CTE。通过对 3D 制造原型的物理实验和数值模拟的结合,我们展示了如何在八面体晶格中利用四面体中出现的两种不同的热膨胀机制来产生包括负、零或正 CTE 的大范围值,而不会损失结构效率。该设计的新颖性和简单性以及易于制造的特点,使这种双材料结构非常适合于各种应用,包括卫星天线、空间光学系统、精密仪器、热致动器和微机电系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da4/5056354/57f30a2ffeb6/srep34924-f1.jpg

相似文献

2
Multimaterial Additively Manufactured Metamaterials Functionalized with Customizable Thermal Expansion in Multiple Directions.
ACS Appl Mater Interfaces. 2023 Oct 11;15(40):47434-47446. doi: 10.1021/acsami.3c08134. Epub 2023 Oct 2.
3
Bifunctional Metamaterials Incorporating Unusual Geminations of Poisson's Ratio and Coefficient of Thermal Expansion.
ACS Appl Mater Interfaces. 2022 Nov 9;14(44):50068-50078. doi: 10.1021/acsami.2c11702. Epub 2022 Oct 25.
5
Origami Metamaterials for Tunable Thermal Expansion.
Adv Mater. 2017 Jul;29(26). doi: 10.1002/adma.201700360. Epub 2017 May 3.
6
Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion.
Phys Rev Lett. 2016 Oct 21;117(17):175901. doi: 10.1103/PhysRevLett.117.175901.
7
Programmable Mechanical Metamaterials with Tailorable Negative Poisson's Ratio and Arbitrary Thermal Expansion in Multiple Thermal Deformation Modes.
ACS Appl Mater Interfaces. 2022 Aug 10;14(31):35905-35916. doi: 10.1021/acsami.2c08270. Epub 2022 Jul 26.
8
2D Mechanical Metamaterials with Widely Tunable Unusual Modes of Thermal Expansion.
Adv Mater. 2019 Nov;31(48):e1905405. doi: 10.1002/adma.201905405. Epub 2019 Oct 9.
9
Isotropic Negative Thermal Expansion Metamaterials.
ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17721-7. doi: 10.1021/acsami.6b05717. Epub 2016 Jul 1.

引用本文的文献

2
A Novel Lightweight Mechanical Metamaterial with a Tunable Thermal Expansion Coefficient.
Materials (Basel). 2025 Apr 11;18(8):1761. doi: 10.3390/ma18081761.
3
Multi-objective design of multi-material truss lattices utilizing graph neural networks.
Sci Rep. 2025 Jan 25;15(1):3187. doi: 10.1038/s41598-025-86812-3.
5
Enhanced thermal conductivity of epoxy composites filled with tetrapod-shaped ZnO.
RSC Adv. 2018 Mar 29;8(22):12337-12343. doi: 10.1039/c8ra01470a. eCollection 2018 Mar 26.
6
Adjustable positive and negative hygrothermal expansion metamaterial inspired by the Maltese cross.
R Soc Open Sci. 2021 Aug 4;8(8):210593. doi: 10.1098/rsos.210593. eCollection 2021 Aug.
7
Cellular fluidics.
Nature. 2021 Jul;595(7865):58-65. doi: 10.1038/s41586-021-03603-2. Epub 2021 Jun 30.
8
Encoding kirigami bi-materials to morph on target in response to temperature.
Sci Rep. 2019 Dec 20;9(1):19499. doi: 10.1038/s41598-019-56118-2.
10
Field responsive mechanical metamaterials.
Sci Adv. 2018 Dec 7;4(12):eaau6419. doi: 10.1126/sciadv.aau6419. eCollection 2018 Dec.

本文引用的文献

2
Thermal expansion anomaly regulated by entropy.
Sci Rep. 2014 Nov 13;4:7043. doi: 10.1038/srep07043.
3
Thin films with ultra-low thermal expansion.
Adv Mater. 2014 May 21;26(19):3076-80. doi: 10.1002/adma.201304997. Epub 2014 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验