Lawrence Livermore National Laboratory, Livermore, CA, USA.
Nature. 2021 Jul;595(7865):58-65. doi: 10.1038/s41586-021-03603-2. Epub 2021 Jun 30.
The natural world provides many examples of multiphase transport and reaction processes that have been optimized by evolution. These phenomena take place at multiple length and time scales and typically include gas-liquid-solid interfaces and capillary phenomena in porous media. Many biological and living systems have evolved to optimize fluidic transport. However, living things are exceptionally complex and very difficult to replicate, and human-made microfluidic devices (which are typically planar and enclosed) are highly limited for multiphase process engineering. Here we introduce the concept of cellular fluidics: a platform of unit-cell-based, three-dimensional structures-enabled by emerging 3D printing methods-for the deterministic control of multiphase flow, transport and reaction processes. We show that flow in these structures can be 'programmed' through architected design of cell type, size and relative density. We demonstrate gas-liquid transport processes such as transpiration and absorption, using evaporative cooling and CO capture as examples. We design and demonstrate preferential liquid and gas transport pathways in three-dimensional cellular fluidic devices with capillary-driven and actively pumped liquid flow, and present examples of selective metallization of pre-programmed patterns. Our results show that the design and fabrication of architected cellular materials, coupled with analytical and numerical predictions of steady-state and dynamic behaviour of multiphase interfaces, provide deterministic control of fluidic transport in three dimensions. Cellular fluidics may transform the design space for spatial and temporal control of multiphase transport and reaction processes.
自然界提供了许多多相传输和反应过程的例子,这些过程已经过进化的优化。这些现象发生在多个长度和时间尺度上,通常包括气-液-固界面和多孔介质中的毛细现象。许多生物和生命系统已经进化到优化流体传输。然而,生物是非常复杂的,很难复制,而人为的微流控设备(通常是平面和封闭的)在多相过程工程方面受到高度限制。在这里,我们引入了细胞流控学的概念:一个基于单元的三维结构平台,通过新兴的 3D 打印方法实现,用于确定性控制多相流、传输和反应过程。我们表明,通过细胞类型、大小和相对密度的架构设计,可以对这些结构中的流动进行“编程”。我们展示了气-液传输过程,如蒸腾和吸收,以蒸发冷却和 CO2 捕获为例。我们设计并演示了在具有毛细驱动和主动泵送液体流动的三维细胞流控装置中优先的液体和气体传输途径,并展示了预编程图案的选择性金属化的例子。我们的结果表明,架构细胞材料的设计和制造,加上对多相界面稳态和动态行为的分析和数值预测,为三维流控传输提供了确定性控制。细胞流控学可能会改变多相传输和反应过程时空控制的设计空间。