Guo Xiaogang, Ni Xiaoyue, Li Jiahong, Zhang Hang, Zhang Fan, Yu Huabin, Wu Jun, Bai Yun, Lei Hongshuai, Huang Yonggang, Rogers John A, Zhang Yihui
AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China.
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, China.
Adv Mater. 2021 Jan;33(3):e2004919. doi: 10.1002/adma.202004919. Epub 2020 Dec 2.
Advanced mechanical metamaterials with unusual thermal expansion properties represent an area of growing interest, due to their promising potential for use in a broad range of areas. In spite of previous work on metamaterials with large or ultralow coefficient of thermal expansion (CTE), achieving a broad range of CTE values with access to large thermally induced dimensional changes in structures with high filling ratios remains a key challenge. Here, design concepts and fabrication strategies for a kirigami-inspired class of 2D hierarchical metamaterials that can effectively convert the thermal mismatch between two closely packed constituent materials into giant levels of biaxial/uniaxial thermal expansion/shrinkage are presented. At large filling ratios (>50%), these systems offer not only unprecedented negative and positive biaxial CTE (i.e., -5950 and 10 710 ppm K ), but also large biaxial thermal expansion properties (e.g., > 21% for 20 K temperature increase). Theoretical modeling of thermal deformations provides a clear understanding of the microstructure-property relationships and serves as a basis for design choices for desired CTE values. An Ashby plot of the CTE versus density serves as a quantitative comparison of the hierarchical metamaterials presented here to previously reported systems, indicating the capability for substantially enlarging the accessible range of CTE.
具有异常热膨胀特性的先进机械超材料由于其在广泛领域的应用潜力而备受关注。尽管之前已经对具有大或超低热膨胀系数(CTE)的超材料进行了研究,但要在高填充率的结构中实现大范围的CTE值并获得大的热致尺寸变化仍然是一个关键挑战。在此,我们提出了一种受kirigami启发的二维分层超材料的设计概念和制造策略,这种超材料能够有效地将两种紧密堆积的组成材料之间的热失配转化为巨大的双轴/单轴热膨胀/收缩。在高填充率(>50%)下,这些系统不仅提供了前所未有的负双轴CTE和正双轴CTE(即-5950和10710 ppm K),还具有大的双轴热膨胀特性(例如,温度升高20 K时>21%)。热变形的理论建模有助于清晰理解微观结构与性能的关系,并为所需CTE值的设计选择提供依据。CTE与密度的阿什比图可对本文提出的分层超材料与先前报道的系统进行定量比较,表明其有能力大幅扩大可实现的CTE范围。