Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA.
AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China.
Adv Mater. 2019 Nov;31(48):e1905405. doi: 10.1002/adma.201905405. Epub 2019 Oct 9.
Most natural materials expand uniformly in all directions upon heating. Artificial, engineered systems offer opportunities to tune thermal expansion properties in interesting ways. Previous reports exploit diverse design principles and fabrication techniques to achieve a negative or ultralow coefficient of thermal expansion, but very few demonstrate tunability over different behaviors. This work presents a collection of 2D material structures that exploit bimaterial serpentine lattices with micrometer feature sizes as the basis of a mechanical metamaterials system capable of supporting positive/negative, isotropic/anisotropic, and homogeneous/heterogeneous thermal expansion properties, with additional features in unusual shearing, bending, and gradient modes of thermal expansion. Control over the thermal expansion tensor achieved in this way provides a continuum-mechanics platform for advanced strain-field engineering, including examples of 2D metamaterials that transform into 3D surfaces upon heating. Integrated electrical and optical sources of thermal actuation provide capabilities for reversible shape reconfiguration with response times of less than 1 s, as the basis of dynamically responsive metamaterials.
大多数天然材料在受热时会均匀地向各个方向膨胀。人工设计的工程系统提供了以有趣的方式调整热膨胀性能的机会。以前的报告利用不同的设计原则和制造技术来实现负或超低的热膨胀系数,但很少有报告能够展示在不同行为下的可调性。这项工作提出了一系列二维材料结构,这些结构利用具有微米特征尺寸的双材料蛇形晶格作为机械超材料系统的基础,该系统能够支持正/负、各向同性/各向异性和均匀/不均匀的热膨胀特性,此外还有不常见的剪切、弯曲和梯度热膨胀模式的特性。以这种方式实现的热膨胀张量控制为先进的应变场工程提供了连续力学平台,包括在加热时转变为 3D 表面的二维超材料的示例。集成的电和光热激励源提供了具有小于 1 秒响应时间的可逆形状重构能力,为动态响应超材料奠定了基础。