Suppr超能文献

利用图神经网络的多材料桁架晶格多目标设计

Multi-objective design of multi-material truss lattices utilizing graph neural networks.

作者信息

Frey Ramón, Tucker Michael R, Afrasiabi Mohamadreza, Bambach Markus

机构信息

Advanced Manufacturing Lab, ETH Zürich, Leonhardstrasse 21, 8092, Zurich, Switzerland.

出版信息

Sci Rep. 2025 Jan 25;15(1):3187. doi: 10.1038/s41598-025-86812-3.

Abstract

The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems. In this work, we propose a novel approach that incorporates material properties as edge features within the graph representation of multi-material truss lattices, utilizing graph neural networks (GNNs) to develop a fast and efficient inverse design framework. We validate this framework by designing lattices with tunable thermal expansion and stiffness properties, showcasing its ability to explore a broad and flexible design space. We showcase the framework's inverse design capabilities for both single and multi-objective optimization tasks and assess its limitations. Additionally, we demonstrate the superior capacity of GNNs in capturing structure-property relationships for multi-material systems. We anticipate that the continued advancement of GNN-assisted inverse design will play a key role in unlocking the full potential of multi-material truss lattices.

摘要

增材制造(AM)在不同尺度和材料类别上的快速发展,使得能够制造出具有高度定制特性的结构化材料。除了几何灵活性之外,多材料增材制造通过结合具有不同特性的材料进一步扩展了设计可能性。虽然机器学习最近在晶格结构的快速逆向设计方面显示出巨大潜力,但其应用在很大程度上仅限于单材料系统。在这项工作中,我们提出了一种新颖的方法,该方法将材料特性作为多材料桁架晶格图形表示中的边特征,利用图神经网络(GNN)开发一个快速高效的逆向设计框架。我们通过设计具有可调热膨胀和刚度特性的晶格来验证这个框架,展示其探索广泛且灵活的设计空间的能力。我们展示了该框架在单目标和多目标优化任务中的逆向设计能力,并评估其局限性。此外,我们证明了GNN在捕捉多材料系统结构 - 特性关系方面的卓越能力。我们预计,GNN辅助逆向设计的持续进步将在释放多材料桁架晶格的全部潜力方面发挥关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9992/11763062/ab48a98a1fc2/41598_2025_86812_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验