Suppr超能文献

合成不对称磷脂脂质体的膜力学性质。

Membrane mechanical properties of synthetic asymmetric phospholipid vesicles.

机构信息

Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY, USA.

Binghamton Biofilm Research Center, State University of New York at Binghamton, Binghamton, NY, USA and Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY, USA.

出版信息

Soft Matter. 2016 Sep 13;12(36):7521-7528. doi: 10.1039/c6sm01349j.

Abstract

Synthetic lipid vesicles have served as important model systems to study cellular membrane biology. Research has shown that the mechanical properties of bilayer membranes significantly affects their biological behavior. The properties of a lipid bilayer are governed by lipid acyl chain length, headgroup type, and the presence of membrane proteins. However, few studies have explored how membrane architecture, in particular trans-bilayer lipid asymmetry, influences membrane mechanical properties. In this study, we investigated the effects of lipid bilayer architecture (i.e. asymmetry) on the mechanical properties of biological membranes. This was achieved using a customized micropipette aspiration system and a novel microfluidic technique previously developed by our team for building asymmetric phospholipid vesicles with tailored bilayer architecture. We found that the bending modulus and area expansion modulus of the synthetic asymmetric bilayers were up to 50% larger than the values acquired for symmetric bilayers. This was caused by the dissimilar lipid distribution in each leaflet of the bilayer for the asymmetric membrane. To the best of our knowledge, this is the first report on the impact of trans-bilayer asymmetry on the area expansion modulus of synthetic bilayer membranes. Since the mechanical properties of bilayer membranes play an important role in numerous cellular processes, these results have significant implications for membrane biology studies.

摘要

合成脂质体已被用作研究细胞膜生物学的重要模型系统。研究表明,双层膜的力学性能显著影响其生物学行为。脂质双层的性质由脂质酰链长度、头基类型和膜蛋白的存在决定。然而,很少有研究探讨膜结构,特别是跨双层脂质不对称性,如何影响膜的力学性能。在这项研究中,我们研究了脂质双层结构(即不对称性)对生物膜力学性能的影响。这是通过使用我们团队之前开发的定制微管吸吮系统和新颖的微流控技术来实现的,该技术用于构建具有定制双层结构的不对称磷脂囊泡。我们发现,合成不对称双层的弯曲弹性模量和面积扩张弹性模量比对称双层的测量值大 50%。这是由于不对称膜中双层的每个叶层中脂质分布不同所致。据我们所知,这是关于跨双层不对称性对合成双层膜面积扩张弹性模量影响的首次报道。由于双层膜的力学性能在许多细胞过程中起着重要作用,因此这些结果对膜生物学研究具有重要意义。

相似文献

1
Membrane mechanical properties of synthetic asymmetric phospholipid vesicles.
Soft Matter. 2016 Sep 13;12(36):7521-7528. doi: 10.1039/c6sm01349j.
2
Measurements of the effect of membrane asymmetry on the mechanical properties of lipid bilayers.
Chem Commun (Camb). 2015 Apr 25;51(32):6976-9. doi: 10.1039/c5cc00712g. Epub 2015 Mar 23.
3
Membrane Structure-Function Insights from Asymmetric Lipid Vesicles.
Acc Chem Res. 2019 Aug 20;52(8):2382-2391. doi: 10.1021/acs.accounts.9b00300. Epub 2019 Aug 6.
4
The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O).
J Biol Chem. 2014 Feb 28;289(9):5467-78. doi: 10.1074/jbc.M113.533943. Epub 2014 Jan 7.
6
Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape.
Nat Chem Biol. 2020 Jun;16(6):644-652. doi: 10.1038/s41589-020-0529-6. Epub 2020 May 4.
7
A molecular dynamics simulation study of nanomechanical properties of asymmetric lipid bilayer.
J Membr Biol. 2013 Jan;246(1):67-73. doi: 10.1007/s00232-012-9505-8. Epub 2012 Oct 17.
8
Transverse lipid organization dictates bending fluctuations in model plasma membranes.
Nanoscale. 2020 Jan 23;12(3):1438-1447. doi: 10.1039/c9nr07977g.
10
Roles of bilayer material properties in function and distribution of membrane proteins.
Annu Rev Biophys Biomol Struct. 2006;35:177-98. doi: 10.1146/annurev.biophys.35.040405.102022.

引用本文的文献

2
Liquid-liquid phase separation-boosted transmembrane delivery in interactive protocell communities.
Nat Commun. 2025 Jun 5;16(1):5231. doi: 10.1038/s41467-025-60541-7.
3
Mechanisms of RCD-1 pore formation and membrane bending.
Nat Commun. 2025 Jan 25;16(1):1011. doi: 10.1038/s41467-025-56398-5.
4
After the gold rush: Getting far from the shallow in studying asymmetric membranes.
Biophys J. 2024 Aug 20;123(16):2355-2357. doi: 10.1016/j.bpj.2024.06.019. Epub 2024 Jun 19.
6
Effect of leaflet asymmetry on the stretching elasticity of lipid bilayers with phosphatidic acid.
Biophys J. 2024 Aug 20;123(16):2406-2421. doi: 10.1016/j.bpj.2024.05.031. Epub 2024 May 31.
7
The Role of Lipid Intrinsic Curvature in the Droplet Interface Bilayer.
Langmuir. 2024 Jun 4;40(22):11428-11435. doi: 10.1021/acs.langmuir.4c00270. Epub 2024 May 20.
8
Nonuniversal impact of cholesterol on membranes mobility, curvature sensing and elasticity.
Nat Commun. 2023 Dec 11;14(1):8038. doi: 10.1038/s41467-023-43892-x.
9
Distributing aminophospholipids asymmetrically across leaflets causes anomalous membrane stiffening.
Biophys J. 2023 Jun 20;122(12):2445-2455. doi: 10.1016/j.bpj.2023.04.025. Epub 2023 Apr 29.
10
A Guide to Your Desired Lipid-Asymmetric Vesicles.
Membranes (Basel). 2023 Feb 23;13(3):267. doi: 10.3390/membranes13030267.

本文引用的文献

1
Nanostructures as analytical tools in bioassays.
Trends Analyt Chem. 2008 May;27(5):394-406. doi: 10.1016/j.trac.2008.03.006. Epub 2008 Mar 31.
2
Studying the effects of asymmetry on the bending rigidity of lipid membranes formed by microfluidics.
Chem Commun (Camb). 2016 Apr 18;52(30):5277-80. doi: 10.1039/c5cc10307j.
3
Continuous microfluidic fabrication of synthetic asymmetric vesicles.
Lab Chip. 2015 Sep 7;15(17):3591-9. doi: 10.1039/c5lc00520e. Epub 2015 Jul 29.
4
Measurements of the effect of membrane asymmetry on the mechanical properties of lipid bilayers.
Chem Commun (Camb). 2015 Apr 25;51(32):6976-9. doi: 10.1039/c5cc00712g. Epub 2015 Mar 23.
6
Monolayer spontaneous curvature of raft-forming membrane lipids.
Soft Matter. 2013 Dec 7;9(45):10877-10884. doi: 10.1039/C3SM51829A.
7
Layer-by-layer cell membrane assembly.
Nat Chem. 2013 Nov;5(11):958-63. doi: 10.1038/nchem.1765. Epub 2013 Sep 29.
8
Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation.
Small. 2014 Mar 12;10(5):950-6. doi: 10.1002/smll.201301904. Epub 2013 Oct 22.
9
Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
Adv Drug Deliv Rev. 2013 Nov;65(11-12):1496-532. doi: 10.1016/j.addr.2013.08.002. Epub 2013 Aug 8.
10
Influence of charge density on bilayer bending rigidity in lipid vesicles: a combined dynamic light scattering and neutron spin-echo study.
Eur Phys J E Soft Matter. 2013 Jul;36(7):77. doi: 10.1140/epje/i2013-13077-0. Epub 2013 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验