Suppr超能文献

行为医学大规模开放在线课程(MOOC)中的虚拟患者:基于案例的技术能力与用户导航路径分析

Virtual Patients in a Behavioral Medicine Massive Open Online Course (MOOC): A Case-Based Analysis of Technical Capacity and User Navigation Pathways.

作者信息

Kononowicz Andrzej A, Berman Anne H, Stathakarou Natalia, McGrath Cormac, Bartyński Tomasz, Nowakowski Piotr, Malawski Maciej, Zary Nabil

机构信息

Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden.

出版信息

JMIR Med Educ. 2015 Sep 10;1(2):e8. doi: 10.2196/mededu.4394.

Abstract

BACKGROUND

Massive open online courses (MOOCs) have been criticized for focusing on presentation of short video clip lectures and asking theoretical multiple-choice questions. A potential way of vitalizing these educational activities in the health sciences is to introduce virtual patients. Experiences from such extensions in MOOCs have not previously been reported in the literature.

OBJECTIVE

This study analyzes technical challenges and solutions for offering virtual patients in health-related MOOCs and describes patterns of virtual patient use in one such course. Our aims are to reduce the technical uncertainty related to these extensions, point to aspects that could be optimized for a better learner experience, and raise prospective research questions by describing indicators of virtual patient use on a massive scale.

METHODS

The Behavioral Medicine MOOC was offered by Karolinska Institutet, a medical university, on the EdX platform in the autumn of 2014. Course content was enhanced by two virtual patient scenarios presented in the OpenLabyrinth system and hosted on the VPH-Share cloud infrastructure. We analyzed web server and session logs and a participant satisfaction survey. Navigation pathways were summarized using a visual analytics tool developed for the purpose of this study.

RESULTS

The number of course enrollments reached 19,236. At the official closing date, 2317 participants (12.1% of total enrollment) had declared completing the first virtual patient assignment and 1640 (8.5%) participants confirmed completion of the second virtual patient assignment. Peak activity involved 359 user sessions per day. The OpenLabyrinth system, deployed on four virtual servers, coped well with the workload. Participant survey respondents (n=479) regarded the activity as a helpful exercise in the course (83.1%). Technical challenges reported involved poor or restricted access to videos in certain areas of the world and occasional problems with lost sessions. The visual analyses of user pathways display the parts of virtual patient scenarios that elicited less interest and may have been perceived as nonchallenging options. Analyzing the user navigation pathways allowed us to detect indications of both surface and deep approaches to the content material among the MOOC participants.

CONCLUSIONS

This study reported on first inclusion of virtual patients in a MOOC. It adds to the body of knowledge by demonstrating how a biomedical cloud provider service can ensure technical capacity and flexible design of a virtual patient platform on a massive scale. The study also presents a new way of analyzing the use of branched virtual patients by visualization of user navigation pathways. Suggestions are offered on improvements to the design of virtual patients in MOOCs.

摘要

背景

大规模开放在线课程(MOOCs)因专注于短视频讲座的呈现以及提出理论性多项选择题而受到批评。在健康科学领域使这些教育活动充满活力的一种潜在方式是引入虚拟患者。此前文献中尚未报道过MOOCs中此类扩展的经验。

目的

本研究分析了在与健康相关的MOOCs中提供虚拟患者所面临的技术挑战及解决方案,并描述了其中一门课程中虚拟患者的使用模式。我们的目标是减少与这些扩展相关的技术不确定性,指出可为更好的学习者体验而优化的方面,并通过描述大规模虚拟患者使用指标提出前瞻性研究问题。

方法

卡罗林斯卡学院(一所医科大学)于2014年秋季在EdX平台上提供了行为医学MOOC。课程内容通过OpenLabyrinth系统中呈现并托管在VPH-Share云基础设施上的两个虚拟患者场景得到增强。我们分析了网络服务器和会话日志以及参与者满意度调查。使用为本研究开发的可视化分析工具总结了导航路径。

结果

课程注册人数达到19236人。在官方截止日期,2317名参与者(占总注册人数的12.1%)宣称完成了第一个虚拟患者任务,1640名(8.5%)参与者确认完成了第二个虚拟患者任务。每日峰值活动涉及359个用户会话。部署在四个虚拟服务器上的OpenLabyrinth系统很好地应对了工作量。参与调查的受访者(n = 479)认为该活动是课程中的一项有益练习(83.1%)。报告的技术挑战包括世界某些地区对视频的访问不佳或受限以及偶尔出现会话丢失问题。对用户路径的可视化分析显示了虚拟患者场景中引起较少兴趣且可能被视为无挑战性选项的部分。分析用户导航路径使我们能够检测到MOOC参与者中对内容材料采用表面和深入方法的迹象。

结论

本研究报道了首次在MOOC中纳入虚拟患者。它通过展示生物医学云提供商服务如何确保大规模虚拟患者平台的技术能力和灵活设计,丰富了知识体系。该研究还提出了一种通过可视化用户导航路径来分析分支虚拟患者使用情况的新方法。针对MOOC中虚拟患者的设计改进提出了建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验