Suppr超能文献

3D打印自动混合芯片实现贫血的快速智能手机诊断。

3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia.

作者信息

Plevniak Kimberly, Campbell Matthew, Myers Timothy, Hodges Abby, He Mei

机构信息

Department of Biological and Agricultural Engineering, Kansas State University , Manhattan, Kansas 66506, USA.

Advanced Manufacturing Institute, Kansas State University , Manhattan, Kansas 66506, USA.

出版信息

Biomicrofluidics. 2016 Oct 5;10(5):054113. doi: 10.1063/1.4964499. eCollection 2016 Sep.

Abstract

Clinical diagnosis requiring central facilities and site visits can be burdensome for patients in resource-limited or rural areas. Therefore, development of a low-cost test that utilizes smartphone data collection and transmission would beneficially enable disease self-management and point-of-care (POC) diagnosis. In this paper, we introduce a low-cost POC diagnostic strategy which integrates 3D design and printing of microfluidic POC device with smartphone-based disease diagnosis in one process as a stand-alone system, offering strong adaptability for establishing diagnostic capacity in resource-limited areas and low-income countries. We employ smartphone output (AutoCAD 360 app) and readout (color-scale analytical app written in-house) functionalities for rapid 3D printing of microfluidic auto-mixers and colorimetric detection of blood hemoglobin levels. The auto-mixing of reagents with blood via capillary force has been demonstrated in 1 second without the requirement of external pumps. We employed this POC system for point-of-care diagnosis of anemia using a training set of patients (n = 16 and n = 6), which showed consistent measurements of blood hemoglobin levels (a.u.c. = 0.97) and comparable diagnostic sensitivity and specificity, compared with standard clinical hematology analyzer. Capable of 3D fabrication flexibility and smartphone compatibility, this work presents a novel diagnostic strategy for advancing personalized medicine and mobile healthcare.

摘要

对于资源有限地区或农村地区的患者而言,需要借助中心设施和实地访视的临床诊断可能会带来负担。因此,开发一种利用智能手机进行数据收集和传输的低成本检测方法,将有利于实现疾病的自我管理和即时诊断(POC)。在本文中,我们介绍了一种低成本的即时诊断策略,该策略将微流控即时诊断设备的3D设计与打印与基于智能手机的疾病诊断整合在一个过程中,形成一个独立的系统,为在资源有限地区和低收入国家建立诊断能力提供了强大的适应性。我们利用智能手机的输出功能(AutoCAD 360应用程序)和读数功能(内部编写的比色分析应用程序),实现微流控自动混合器的快速3D打印以及血液血红蛋白水平的比色检测。已证明通过毛细作用力可在1秒内实现试剂与血液的自动混合,无需外部泵。我们使用该即时诊断系统对一组患者(n = 16和n = 6)进行贫血的即时诊断,与标准临床血液学分析仪相比,该系统对血液血红蛋白水平的测量结果一致(曲线下面积 = 0.97),且诊断敏感性和特异性相当。这项工作具有3D制造灵活性和智能手机兼容性,为推进个性化医疗和移动医疗保健提供了一种新颖的诊断策略。

相似文献

1
3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia.
Biomicrofluidics. 2016 Oct 5;10(5):054113. doi: 10.1063/1.4964499. eCollection 2016 Sep.
2
3D printed microfluidic mixer for point-of-care diagnosis of anemia.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:267-270. doi: 10.1109/EMBC.2016.7590691.
3
Disposable platform provides visual and color-based point-of-care anemia self-testing.
J Clin Invest. 2014 Oct;124(10):4387-94. doi: 10.1172/JCI76666. Epub 2014 Aug 26.
7
Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care.
Biotechnol Adv. 2016 May-Jun;34(3):305-20. doi: 10.1016/j.biotechadv.2016.02.008. Epub 2016 Feb 18.
9
Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
J Microsc. 2019 Oct;276(1):13-20. doi: 10.1111/jmi.12829. Epub 2019 Sep 22.
10
Paper-Plastic Hybrid Microfluidic Device for Smartphone-Based Colorimetric Analysis of Urine.
Anal Chem. 2017 Dec 19;89(24):13160-13166. doi: 10.1021/acs.analchem.7b02612. Epub 2017 Nov 28.

引用本文的文献

4
A rapid assay provides on-site quantification of tetrahydrocannabinol in oral fluid.
Sci Transl Med. 2021 Oct 20;13(616):eabe2352. doi: 10.1126/scitranslmed.abe2352.
5
Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography.
Molecules. 2021 May 10;26(9):2817. doi: 10.3390/molecules26092817.
6
Emerging point-of-care technologies for anemia detection.
Lab Chip. 2021 May 18;21(10):1843-1865. doi: 10.1039/d0lc01235a.
9
3D-printed miniaturized fluidic tools in chemistry and biology.
Trends Analyt Chem. 2018 Sep;106:37-52. doi: 10.1016/j.trac.2018.06.013. Epub 2018 Jul 5.
10
3D Printed Microfluidics.
Annu Rev Anal Chem (Palo Alto Calif). 2020 Jun 12;13(1):45-65. doi: 10.1146/annurev-anchem-091619-102649. Epub 2019 Dec 10.

本文引用的文献

1
3D Printed Multimaterial Microfluidic Valve.
PLoS One. 2016 Aug 15;11(8):e0160624. doi: 10.1371/journal.pone.0160624. eCollection 2016.
2
Embedding objects during 3D printing to add new functionalities.
Biomicrofluidics. 2016 Jul 13;10(4):044104. doi: 10.1063/1.4958909. eCollection 2016 Jul.
4
3D-printing of transparent bio-microfluidic devices in PEG-DA.
Lab Chip. 2016 Jun 21;16(12):2287-94. doi: 10.1039/c6lc00153j. Epub 2016 May 24.
5
3D-printed fluidic networks as vasculature for engineered tissue.
Lab Chip. 2016 May 24;16(11):2025-43. doi: 10.1039/c6lc00193a.
6
3D printed microfluidic devices: enablers and barriers.
Lab Chip. 2016 May 24;16(11):1993-2013. doi: 10.1039/c6lc00284f.
8
The upcoming 3D-printing revolution in microfluidics.
Lab Chip. 2016 May 21;16(10):1720-42. doi: 10.1039/c6lc00163g. Epub 2016 Apr 21.
9
Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones.
Lab Chip. 2016 Mar 21;16(6):943-58. doi: 10.1039/c5lc01524c. Epub 2016 Feb 22.
10
3D-Printed Microfluidics.
Angew Chem Int Ed Engl. 2016 Mar 14;55(12):3862-81. doi: 10.1002/anie.201504382. Epub 2016 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验