Suppr超能文献

在3D打印过程中嵌入物体以添加新功能。

Embedding objects during 3D printing to add new functionalities.

作者信息

Yuen Po Ki

机构信息

Science and Technology, Corning Incorporated , Corning, New York 14831-0001, USA.

出版信息

Biomicrofluidics. 2016 Jul 13;10(4):044104. doi: 10.1063/1.4958909. eCollection 2016 Jul.

Abstract

A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication. These 3D printed glass bottom casting molds would result in PDMS replicas with a flat smooth bottom surface for better bonding and adhesion.

摘要

本文提出了一种基于熔融沉积建模(FDM)(也称为熔丝制造或熔融聚合物沉积)在3D打印过程中集成和嵌入物体以添加新功能的新方法。与典型的3D打印不同,基于FDM的3D打印可以在3D打印过程中集成和嵌入物体,并且基于FDM的3D打印设备通常不需要任何后处理和精加工。因此,3D打印了各种集成玻璃盖玻片或带有和不带有嵌入式多孔膜的聚苯乙烯薄膜的流体装置,以及嵌入了康宁(®)Fibrance™光扩散纤维的光学装置,以证明基于FDM的3D打印和嵌入方法的多功能性。使用蓝色食用染料溶液进行流体灌注流动实验,以直观地确认流体通过3D打印流体装置中嵌入式多孔膜的流动和/或流体灌注。与典型的3D打印设备类似,基于FDM的3D打印设备充其量是半透明的,除非进行后抛光,并且在任何流体装置中都非常需要光学透明度;集成玻璃盖玻片或聚苯乙烯薄膜将为观察和可视化提供完美的光学透明窗口。此外,它们还为生物或生物分子应用提供了兼容的平坦光滑表面。带有嵌入式多孔膜的3D打印流体装置适用于生物或化学应用,如连续灌注细胞培养或生物催化合成,但无需任何设备后组装和精加工。嵌入康宁(®)Fibrance™光扩散纤维的3D打印设备将在显示、照明或光学应用中得到应用。此外,基于FDM的3D打印和嵌入方法还可用于打印带有集成玻璃底部的铸模,用于聚二甲基硅氧烷(PDMS)设备复制。这些3D打印的玻璃底部铸模将产生具有平坦光滑底部表面的PDMS复制品,以实现更好的粘结和粘附。

相似文献

1
Embedding objects during 3D printing to add new functionalities.
Biomicrofluidics. 2016 Jul 13;10(4):044104. doi: 10.1063/1.4958909. eCollection 2016 Jul.
2
Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
ACS Biomater Sci Eng. 2021 Aug 9;7(8):3947-3963. doi: 10.1021/acsbiomaterials.1c00633. Epub 2021 Jul 20.
3
Using Printing Orientation for Tuning Fluidic Behavior in Microfluidic Chips Made by Fused Deposition Modeling 3D Printing.
Anal Chem. 2017 Dec 5;89(23):12805-12811. doi: 10.1021/acs.analchem.7b03228. Epub 2017 Nov 17.
6
FDM 3D Printing of High-Pressure, Heat-Resistant, Transparent Microfluidic Devices.
Anal Chem. 2018 Sep 4;90(17):10450-10456. doi: 10.1021/acs.analchem.8b02356. Epub 2018 Aug 17.
7
Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.
Materials (Basel). 2017 Oct 19;10(10):1199. doi: 10.3390/ma10101199.
8
Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
Anal Chim Acta. 2018 Feb 13;1000:248-255. doi: 10.1016/j.aca.2017.11.063. Epub 2017 Nov 30.
9
Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
Micromachines (Basel). 2020 Jun 1;11(6):567. doi: 10.3390/mi11060567.
10
Low-Cost Passive Sampling Device with Integrated Porous Membrane Produced Using Multimaterial 3D Printing.
Anal Chem. 2018 Oct 16;90(20):12081-12089. doi: 10.1021/acs.analchem.8b02893. Epub 2018 Oct 4.

引用本文的文献

1
MXene synthesis in a semi-continuous 3D-printed PVDF flow reactor.
Nanoscale Adv. 2025 Mar 19;7(8):2166-2170. doi: 10.1039/d4na00991f. eCollection 2025 Apr 8.
3
A 3D printed plant model for accurate and reliable 3D plant phenotyping.
Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae035.
5
A 3D Printer in the Lab: Not Only a Toy.
Adv Sci (Weinh). 2022 Sep;9(27):e2202610. doi: 10.1002/advs.202202610. Epub 2022 Jul 13.
6
Hybrid 3D printed-paper microfluidics.
Sci Rep. 2020 Oct 27;10(1):18379. doi: 10.1038/s41598-020-75489-5.
7
3D-printed miniaturized fluidic tools in chemistry and biology.
Trends Analyt Chem. 2018 Sep;106:37-52. doi: 10.1016/j.trac.2018.06.013. Epub 2018 Jul 5.
8
3D Printed Microfluidics.
Annu Rev Anal Chem (Palo Alto Calif). 2020 Jun 12;13(1):45-65. doi: 10.1146/annurev-anchem-091619-102649. Epub 2019 Dec 10.
9
Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.
Anal Bioanal Chem. 2017 Jul;409(18):4311-4319. doi: 10.1007/s00216-017-0398-3. Epub 2017 Jun 13.
10
3D printed microfluidic mixer for point-of-care diagnosis of anemia.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:267-270. doi: 10.1109/EMBC.2016.7590691.

本文引用的文献

1
The upcoming 3D-printing revolution in microfluidics.
Lab Chip. 2016 May 21;16(10):1720-42. doi: 10.1039/c6lc00163g. Epub 2016 Apr 21.
2
3D printed microfluidics for biological applications.
Lab Chip. 2015;15(18):3627-37. doi: 10.1039/c5lc00685f.
3
3D-printed microfluidic automation.
Lab Chip. 2015 Apr 21;15(8):1934-41. doi: 10.1039/c5lc00126a.
4
3D printed microfluidic devices with integrated valves.
Biomicrofluidics. 2015 Jan 13;9(1):016501. doi: 10.1063/1.4905840. eCollection 2015 Jan.
6
Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications.
Biomicrofluidics. 2014 Oct 16;8(5):052112. doi: 10.1063/1.4898632. eCollection 2014 Sep.
7
Discrete elements for 3D microfluidics.
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15013-8. doi: 10.1073/pnas.1414764111. Epub 2014 Sep 22.
9
Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor.
Lab Chip. 2014 Sep 21;14(18):3510-8. doi: 10.1039/c4lc00570h. Epub 2014 Jul 11.
10
Low cost lab-on-a-chip prototyping with a consumer grade 3D printer.
Lab Chip. 2014 Aug 21;14(16):2978-82. doi: 10.1039/c4lc00394b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验