Department of Chemistry, Duke University , Durham, North Carolina 27708, United States.
Acc Chem Res. 2016 Nov 15;49(11):2468-2477. doi: 10.1021/acs.accounts.6b00380. Epub 2016 Oct 17.
Metal ions are essential for a wide range of physiological processes, but they can also be toxic if not appropriately regulated by a complex network of metal trafficking proteins. Intervention in cellular metal distribution with small-molecule or peptide chelating agents has promising therapeutic potential to harness metals to fight disease. Molecular outcomes associated with forming metal-chelate interactions in situ include altering the concentration and subcellular metal distribution, inhibiting metalloenzymes, enhancing the reactivity of a metal species to elicit a favorable biological response, or passivating the reactivity of a metal species to prevent deleterious reactivity. The systemic administration of metal chelating agents, however, raises safety concerns due to the potential risks of indiscriminate extraction of metals from critical metalloproteins and inhibition of metalloenzymes. One can estimate that chelators capable of complexing metal ions with dissociation constants in the submicromolar range are thermodynamically capable of extracting metal ions from some metalloproteins and disrupting regular function. Such dissociation constants are easily attainable for multidentate chelators interacting with first-row d-block metal cations in relevant +1, + 2, and +3 oxidation states. To overcome this challenge of indiscriminate metal chelation, we have pursued a prodrug strategy for chelating agents in which the resulting "prochelator" has negligible metal binding affinity until a specific stimulus generates a favorable metal binding site. The prochelator strategy enables conditional metal chelation to occur preferentially in locations affected by disease- or therapy-associated stimuli, thereby minimizing off-target metal chelation. Our design of responsive prochelators encompasses three general approaches of activation: the "removal" approach operates by eliminating a masking group that blocks a potential metal chelation site to reveal the complete binding site under the desired conditions; the molecular "switch" approach involves a reversible conformational change between inactive and active forms of a chelator with differential metal binding affinity under specific conditions; and the "addition" approach adds a new ligand donor arm to the prochelator to constitute a complete metal chelation site. Adopting these approaches, we have created four categories of triggerable prochelators that respond to (1) reactive oxygen species, (2) light, (3) specific enzymes, and (4) biological regulatory events. This Account highlights progress from our group on building prochelators that showcase these four categories of responsive metal chelating agents for manipulating cellular metals. The creation and chemical understanding of such stimulus-responsive prochelators enables exciting applications for understanding the cell biology of metals and for developing therapies based on metal-dependent processes in a variety of diseases.
金属离子对于广泛的生理过程是必不可少的,但如果不能通过复杂的金属转运蛋白网络进行适当调节,它们也可能有毒。使用小分子或肽螯合剂干预细胞内金属分布具有很大的治疗潜力,可以利用金属来对抗疾病。与原位形成金属螯合物相互作用相关的分子结果包括改变浓度和亚细胞金属分布、抑制金属酶、增强金属物种的反应性以引起有利的生物学反应,或使金属物种的反应性钝化以防止有害反应性。然而,由于金属螯合剂从关键金属蛋白中不分青红皂白地提取金属和抑制金属酶的潜在风险,全身性给予金属螯合剂会引起安全性问题。可以估计,具有在亚毫摩尔范围内与金属离子形成配合物的离解常数的螯合剂在热力学上能够从一些金属蛋白中提取金属离子并破坏其正常功能。对于与相关+1、+2 和+3 氧化态的第一行 d 块金属阳离子相互作用的多齿螯合剂来说,很容易达到这种离解常数。为了克服这种不分青红皂白的金属螯合的挑战,我们对螯合剂采用了前药策略,其中所得的“前螯合剂”在特定刺激产生有利的金属结合位点之前几乎没有金属结合亲和力。前螯合剂策略使条件性金属螯合能够优先发生在受疾病或治疗相关刺激影响的位置,从而最大限度地减少非靶向金属螯合。我们设计的响应性前螯合剂包含三种一般的激活方法:“去除”方法通过消除阻止潜在金属螯合位点的掩蔽基团来操作,以在所需条件下显示完整的结合位点;分子“开关”方法涉及在特定条件下具有不同金属结合亲和力的螯合剂的无活性和活性形式之间的可逆构象变化;和“添加”方法将新的配体供体臂添加到前螯合剂中以构成完整的金属螯合位点。采用这些方法,我们创建了四类可响应的前螯合剂,它们可响应(1)活性氧物质、(2)光、(3)特定酶和(4)生物调节事件。本报告重点介绍了我们小组在构建前螯合剂方面的进展,这些前螯合剂展示了用于操纵细胞内金属的这四类响应性金属螯合剂。这些刺激响应性前螯合剂的创建和化学理解为理解金属的细胞生物学以及为各种疾病中基于金属依赖过程的治疗方法的发展提供了令人兴奋的应用。