Desai Nikhil, Shaik Vaseem A, Ardekani Arezoo M
School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States.
Front Microbiol. 2019 Mar 12;10:289. doi: 10.3389/fmicb.2019.00289. eCollection 2019.
In this study, we document hydrodynamics-mediated trapping of microorganisms around a moving spherical nutrient source such as a settling marine snow aggregate. There exists a range of size and excess density of the nutrient source, and motility and morphology of the microorganism under which hydrodynamic interactions enable the passive capture of approaching microorganisms onto a moving nutrient source. We simulate trajectories of chemotactic and non-chemotactic bacteria encountering a sinking marine snow particle effusing soluble nutrients. We calculate the average nutrient concentration to which the bacteria are exposed, under regimes of strong and weak hydrodynamic trapping. We find that hydrodynamic trapping can significantly amplify (by ≈40%) the nutrient exposure of bacteria, both chemotactic and non-chemotactic. The subtle interactions between hydrodynamic and chemotactic effects reveal non-trivial variations in this "hydrodynamic amplification," as a function of relevant biophysical parameters. Our study provides a consistent description of how microorganism motility, fluid flow and nutrient distribution affect foraging by marine microbes, and the formation of biofilms on spherical nutrient sources under the influence of fluid flow.
在本研究中,我们记录了流体动力学介导的微生物在移动的球形营养源(如沉降的海洋雪团聚体)周围的捕获过程。营养源存在一系列大小和过剩密度,以及微生物的运动性和形态,在这些条件下,流体动力学相互作用能够使接近的微生物被动捕获到移动的营养源上。我们模拟了趋化性和非趋化性细菌遇到下沉的、释放可溶性营养物的海洋雪颗粒时的轨迹。我们计算了在强流体动力学捕获和弱流体动力学捕获条件下细菌所接触的平均营养物浓度。我们发现,流体动力学捕获能够显著增强(约40%)趋化性和非趋化性细菌的营养物暴露。流体动力学效应和趋化性效应之间的微妙相互作用揭示了这种“流体动力学放大”作为相关生物物理参数的函数的非平凡变化。我们的研究提供了一个关于微生物运动性、流体流动和营养物分布如何影响海洋微生物觅食以及在流体流动影响下球形营养源上生物膜形成的一致描述。