Suppr超能文献

声流涂层处理颗粒和细胞。

Acoustofluidic coating of particles and cells.

机构信息

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.

出版信息

Lab Chip. 2016 Nov 1;16(22):4366-4372. doi: 10.1039/c6lc00951d.

Abstract

On-chip microparticle and cell coating technologies enable a myriad of applications in chemistry, engineering, and medicine. Current microfluidic coating technologies often rely on magnetic labeling and concurrent deflection of particles across laminar streams of chemicals. Herein, we introduce an acoustofluidic approach for microparticle and cell coating by implementing tilted-angle standing surface acoustic waves (taSSAWs) into microchannels with multiple inlets. The primary acoustic radiation force generated by the taSSAW field was exploited in order to migrate the particles across the microchannel through multiple laminar streams, which contained the buffer and coating chemicals. We demonstrate effective coating of polystyrene microparticles and HeLa cells without the need for magnetic labelling. We characterized the coated particles and HeLa cells with fluorescence microscopy and scanning electron microscopy. Our acoustofluidic-based particle and cell coating method is label-free, biocompatible, and simple. It can be useful in the on-chip manufacturing of many functional particles and cells.

摘要

片上微颗粒和细胞涂层技术使化学、工程和医学领域的各种应用成为可能。目前的微流控涂层技术通常依赖于磁标记和颗粒在层流化学物质中的同时转向。在此,我们通过在具有多个入口的微通道中实现倾斜角驻波表面声波(taSSAW),引入了一种用于微颗粒和细胞涂层的声流方法。我们利用 taSSAW 场产生的主要声辐射力,使颗粒通过多个层流穿过微通道,其中包含缓冲液和涂层化学品。我们证明了无需使用磁标记即可有效涂覆聚苯乙烯微颗粒和 HeLa 细胞。我们使用荧光显微镜和扫描电子显微镜对涂覆的颗粒和 HeLa 细胞进行了表征。我们基于声流的颗粒和细胞涂层方法是无标记的、生物相容的且简单的。它可用于许多功能颗粒和细胞的片上制造。

相似文献

1
Acoustofluidic coating of particles and cells.
Lab Chip. 2016 Nov 1;16(22):4366-4372. doi: 10.1039/c6lc00951d.
2
Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
Ultrason Sonochem. 2022 Sep;89:106161. doi: 10.1016/j.ultsonch.2022.106161. Epub 2022 Sep 6.
3
A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers.
Lab Chip. 2020 Apr 7;20(7):1298-1308. doi: 10.1039/d0lc00106f. Epub 2020 Mar 20.
4
Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics.
Heliyon. 2024 Jan 29;10(3):e25042. doi: 10.1016/j.heliyon.2024.e25042. eCollection 2024 Feb 15.
5
Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
Anal Bioanal Chem. 2018 May;410(14):3385-3394. doi: 10.1007/s00216-018-1034-6. Epub 2018 Apr 12.
6
Acoustofluidic relay: sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles.
J Lab Autom. 2014 Apr;19(2):137-43. doi: 10.1177/2211068213485748. Epub 2013 Apr 16.
7
Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
Sensors (Basel). 2022 Jun 22;22(13):4709. doi: 10.3390/s22134709.
8
Effective cell trapping using PDMS microspheres in an acoustofluidic chip.
Colloids Surf B Biointerfaces. 2017 Sep 1;157:347-354. doi: 10.1016/j.colsurfb.2017.06.008. Epub 2017 Jun 9.
10
Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
ACS Omega. 2022 Dec 27;8(1):311-323. doi: 10.1021/acsomega.2c04273. eCollection 2023 Jan 10.

引用本文的文献

1
Layer-by-Layer Nanoparticle Assembly for Biomedicine: Mechanisms, Technologies, and Advancement via Acoustofluidics.
ACS Appl Nano Mater. 2024 Jul 16;7(14):15874-15902. doi: 10.1021/acsanm.4c02463. eCollection 2024 Jul 26.
2
Acoustofluidics-Assisted Coating of Microparticles.
Polymers (Basel). 2023 Oct 9;15(19):4033. doi: 10.3390/polym15194033.
4
Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
ACS Omega. 2022 Dec 27;8(1):311-323. doi: 10.1021/acsomega.2c04273. eCollection 2023 Jan 10.
5
A practical microfluidic pump enabled by acoustofluidics and 3D printing.
Microfluid Nanofluidics. 2021;25(1):5. doi: 10.1007/s10404-020-02411-w. Epub 2021 Jan 4.
6
Continuous Ultrasonic Reactors: Design, Mechanism and Application.
Materials (Basel). 2020 Jan 11;13(2):344. doi: 10.3390/ma13020344.
7
Acoustic Actuation of Fabricated Artificial Cilia.
J Micromech Microeng. 2018 Feb;28(2). doi: 10.1088/1361-6439/aaa0ae. Epub 2018 Jan 9.

本文引用的文献

1
On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.
Small. 2016 Jul;12(28):3861-9. doi: 10.1002/smll.201600737. Epub 2016 Jun 16.
2
Acoustofluidic Transfer of Inflammatory Cells from Human Sputum Samples.
Anal Chem. 2016 Jun 7;88(11):5655-61. doi: 10.1021/acs.analchem.5b03383. Epub 2016 May 16.
3
Rotational manipulation of single cells and organisms using acoustic waves.
Nat Commun. 2016 Mar 23;7:11085. doi: 10.1038/ncomms11085.
5
Onset of particle trapping and release via acoustic bubbles.
Lab Chip. 2016 Aug 2;16(16):3024-32. doi: 10.1039/c5lc01420d.
6
A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
Lab Chip. 2015 Jun 7;15(11):2467-75. doi: 10.1039/c4lc01316f. Epub 2015 May 5.
7
Acoustic separation of circulating tumor cells.
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):4970-5. doi: 10.1073/pnas.1504484112. Epub 2015 Apr 6.
8
Controlling cell-cell interactions using surface acoustic waves.
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):43-8. doi: 10.1073/pnas.1422068112. Epub 2014 Dec 22.
9
Standing surface acoustic wave (SSAW)-based cell washing.
Lab Chip. 2015 Jan 7;15(1):331-8. doi: 10.1039/c4lc00903g.
10
Standing surface acoustic wave based cell coculture.
Anal Chem. 2014 Oct 7;86(19):9853-9. doi: 10.1021/ac502453z. Epub 2014 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验