Suppr超能文献

核小体在位于核小体边缘的位点选择性抑制Cas9的脱靶活性。

Nucleosomes Selectively Inhibit Cas9 Off-target Activity at a Site Located at the Nucleosome Edge.

作者信息

Hinz John M, Laughery Marian F, Wyrick John J

机构信息

From the School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164.

From the School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164

出版信息

J Biol Chem. 2016 Nov 25;291(48):24851-24856. doi: 10.1074/jbc.C116.758706. Epub 2016 Oct 18.

Abstract

Nucleosomes affect Cas9 binding and activity at on-target sites, but their impact at off-target sites is unknown. To investigate how nucleosomes affect Cas9 cleavage at off-target sites in vitro, we used a single guide RNA (sgRNA) that has been previously shown to efficiently direct Cas9 cleavage at the edge of the strongly positioned 601 nucleosome. Our data indicate that single mismatches between the sgRNA and DNA target have relatively little effect on Cas9 cleavage of naked DNA substrates, but strongly inhibit cleavage of nucleosome substrates, particularly when the mismatch is in the sgRNA "seed" region. These findings indicate that nucleosomes may enhance Cas9 specificity by inhibiting cleavage of off-target sites at the nucleosome edge.

摘要

核小体影响Cas9在靶位点的结合和活性,但其在脱靶位点的影响尚不清楚。为了研究核小体如何在体外影响Cas9在脱靶位点的切割,我们使用了一种单导向RNA(sgRNA),该sgRNA先前已被证明能有效地引导Cas9在定位强烈的601核小体边缘进行切割。我们的数据表明,sgRNA与DNA靶标之间的单个错配对裸露DNA底物的Cas9切割影响相对较小,但强烈抑制核小体底物的切割,特别是当错配位于sgRNA的“种子”区域时。这些发现表明,核小体可能通过抑制核小体边缘脱靶位点的切割来增强Cas9的特异性。

相似文献

1
Nucleosomes Selectively Inhibit Cas9 Off-target Activity at a Site Located at the Nucleosome Edge.
J Biol Chem. 2016 Nov 25;291(48):24851-24856. doi: 10.1074/jbc.C116.758706. Epub 2016 Oct 18.
2
Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.
Biochemistry. 2015 Dec 8;54(48):7063-6. doi: 10.1021/acs.biochem.5b01108. Epub 2015 Nov 24.
4
Structural insights into DNA cleavage activation of CRISPR-Cas9 system.
Nat Commun. 2017 Nov 9;8(1):1375. doi: 10.1038/s41467-017-01496-2.
5
A G-quadruplex motif at the 3' end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency.
Chem Commun (Camb). 2018 Mar 7;54(19):2377-2380. doi: 10.1039/c7cc08893k. Epub 2018 Feb 16.
6
Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.
Proteins. 2017 Feb;85(2):342-353. doi: 10.1002/prot.25229. Epub 2017 Jan 5.
7
Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system.
PLoS One. 2019 Dec 10;14(12):e0226107. doi: 10.1371/journal.pone.0226107. eCollection 2019.
9
Guide RNA functional modules direct Cas9 activity and orthogonality.
Mol Cell. 2014 Oct 23;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019. Epub 2014 Oct 16.
10
Mapping the sugar dependency for rational generation of a DNA-RNA hybrid-guided Cas9 endonuclease.
Nat Commun. 2017 Nov 20;8(1):1610. doi: 10.1038/s41467-017-01732-9.

引用本文的文献

1
Structural insights into how Cas9 targets nucleosomes.
Nat Commun. 2024 Dec 30;15(1):10744. doi: 10.1038/s41467-024-54768-z.
2
Engineered transcription-associated Cas9 targeting in eukaryotic cells.
Nat Commun. 2024 Nov 27;15(1):10287. doi: 10.1038/s41467-024-54629-9.
3
Engineered transcription-associated Cas9 targeting in eukaryotic cells.
bioRxiv. 2024 Aug 18:2023.09.18.558319. doi: 10.1101/2023.09.18.558319.
4
The impact of nucleosome structure on CRISPR/Cas9 fidelity.
Nucleic Acids Res. 2023 Mar 21;51(5):2333-2344. doi: 10.1093/nar/gkad021.
5
Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in .
Front Bioeng Biotechnol. 2022 May 30;10:924914. doi: 10.3389/fbioe.2022.924914. eCollection 2022.
6
dCas9 binding inhibits the initiation of base excision repair in vitro.
DNA Repair (Amst). 2022 Jan;109:103257. doi: 10.1016/j.dnarep.2021.103257. Epub 2021 Nov 20.
7
Multiplexed Single-Molecule Experiments Reveal Nucleosome Invasion Dynamics of the Cas9 Genome Editor.
J Am Chem Soc. 2021 Oct 13;143(40):16313-16319. doi: 10.1021/jacs.1c06195. Epub 2021 Oct 1.
8
Multiplexed Simian Immunodeficiency Virus-Specific Paired RNA-Guided Cas9 Nickases Inactivate Proviral DNA.
J Virol. 2021 Nov 9;95(23):e0088221. doi: 10.1128/JVI.00882-21. Epub 2021 Sep 22.
9
Inhibition of CRISPR-Cas12a DNA targeting by nucleosomes and chromatin.
Sci Adv. 2021 Mar 10;7(11). doi: 10.1126/sciadv.abd6030. Print 2021 Mar.
10
Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence.
Sci Rep. 2020 Aug 24;10(1):14120. doi: 10.1038/s41598-020-70804-6.

本文引用的文献

1
Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity.
Mol Cell. 2016 Aug 4;63(3):355-70. doi: 10.1016/j.molcel.2016.07.004.
2
Nucleosome breathing and remodeling constrain CRISPR-Cas9 function.
Elife. 2016 Apr 28;5:e13450. doi: 10.7554/eLife.13450.
3
Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases.
Nat Rev Genet. 2016 May;17(5):300-12. doi: 10.1038/nrg.2016.28.
4
Nucleosomes impede Cas9 access to DNA in vivo and in vitro.
Elife. 2016 Mar 17;5:e12677. doi: 10.7554/eLife.12677.
5
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.
Science. 2016 Feb 19;351(6275):867-71. doi: 10.1126/science.aad8282. Epub 2016 Jan 14.
6
Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.
Biochemistry. 2015 Dec 8;54(48):7063-6. doi: 10.1021/acs.biochem.5b01108. Epub 2015 Nov 24.
7
Conformational control of DNA target cleavage by CRISPR-Cas9.
Nature. 2015 Nov 5;527(7576):110-3. doi: 10.1038/nature15544. Epub 2015 Oct 28.
8
STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition.
Science. 2015 Jun 26;348(6242):1477-81. doi: 10.1126/science.aab1452.
9
Cas9-chromatin binding information enables more accurate CRISPR off-target prediction.
Nucleic Acids Res. 2015 Oct 15;43(18):e118. doi: 10.1093/nar/gkv575. Epub 2015 Jun 1.
10
Histone Sprocket Arginine Residues Are Important for Gene Expression, DNA Repair, and Cell Viability in Saccharomyces cerevisiae.
Genetics. 2015 Jul;200(3):795-806. doi: 10.1534/genetics.115.175885. Epub 2015 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验