Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin-Dahlem D-14195, Germany.
Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong 999077, China.
Nat Commun. 2016 Oct 19;7:13256. doi: 10.1038/ncomms13256.
In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene-graphene and graphene-substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp carbon nanostructures in between graphene and graphite.
在从石墨烯到石墨的转变过程中,每个单独的石墨烯层的添加都会改变电子结构,并产生具有独特性质的不同材料。因此,对少层石墨烯的可控生长具有重要的基础意义,并将提供具有工程化电子结构的材料。在这里,我们结合等温生长和蚀刻实验以及原位扫描电子显微镜,揭示了少层石墨烯的堆叠序列和层间耦合强度。观察到的层依赖蚀刻速率揭示了石墨烯-石墨烯和石墨烯-衬底相互作用的相对强度,以及由此产生的吸附层生长模式。扫描隧道显微镜和密度泛函理论计算证实了石墨烯边缘原子与铂之间的强耦合。模拟蚀刻证实了可以将蚀刻视为反向生长。这项工作表明,在受控气氛下进行实时成像,是设计介于石墨烯和石墨之间的 sp 碳纳米结构合成方案的一种强大方法。